To provide a desirable number of parallel subnetworks as required to reach a robust inference in an active modulation diffractive deep neural network, a random micro-phase-shift dropvolume that involves five-layer statistically independent dropconnect arrays is monolithically embedded into the unitary backpropagation, which does not require any mathematical derivations with respect to the multilayer arbitrary phase-only modulation masks, even maintaining the nonlinear nested characteristic of neural networks, and generating an opportunity to realize a structured-phase encoding within the dropvolume. Further, a drop-block strategy is introduced into the structured-phase patterns designed to flexibly configure a credible macro-micro phase dropvolume allowing for convergence. Concretely, macro-phase dropconnects concerning fringe griddles that encapsulate sparse micro-phase are implemented. We numerically validate that macro-micro phase encoding is a good plan to the types of encoding within a dropvolume.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.486384DOI Listing

Publication Analysis

Top Keywords

micro-phase-shift dropvolume
8
diffractive deep
8
deep neural
8
neural network
8
encoding dropvolume
8
macro-micro phase
8
dropvolume
5
optical micro-phase-shift
4
dropvolume diffractive
4
network provide
4

Similar Publications

To provide a desirable number of parallel subnetworks as required to reach a robust inference in an active modulation diffractive deep neural network, a random micro-phase-shift dropvolume that involves five-layer statistically independent dropconnect arrays is monolithically embedded into the unitary backpropagation, which does not require any mathematical derivations with respect to the multilayer arbitrary phase-only modulation masks, even maintaining the nonlinear nested characteristic of neural networks, and generating an opportunity to realize a structured-phase encoding within the dropvolume. Further, a drop-block strategy is introduced into the structured-phase patterns designed to flexibly configure a credible macro-micro phase dropvolume allowing for convergence. Concretely, macro-phase dropconnects concerning fringe griddles that encapsulate sparse micro-phase are implemented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!