To simplify the experimental equipment and improve the signal-to-noise ratio (SNR) of the traditional Brillouin optical time-domain analysis (BOTDA) system, we propose a scheme using the frequency-agile technique to measure Brillouin gain and loss spectra simultaneously. The pump wave is modulated into the double-sideband frequency-agile pump pulse train (DSFA-PPT), and the continuous probe wave is up-shifted by a fixed frequency value. With the frequency-scanning of DSFA-PPT, pump pulses at the -1st-order sideband and the +1st-order sideband interact with the continuous probe wave via stimulated Brillouin scattering, respectively. Therefore, the Brillouin loss and gain spectra are generated simultaneously in one frequency-agile cycle. Their difference relates to a synthetic Brillouin spectrum with a 3.65-dB SNR improvement for a 20-ns pump pulse. This work simplifies the experimental device, and no optical filter is needed. Static and dynamic measurements are performed in the experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.491559DOI Listing

Publication Analysis

Top Keywords

brillouin gain
8
gain loss
8
loss spectra
8
frequency-agile technique
8
pump pulse
8
continuous probe
8
probe wave
8
brillouin
6
dynamic distributed
4
distributed optical
4

Similar Publications

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Here we design a simple M-shaped optical fiber to generate equal-power dual Brillouin gain peaks, and numerically simulate bending loss-resistant temperature and curvature sensing. By investigating the M-shaped fibers transitioning from ring-core to circular-core, we examine the Brillouin gain spectrum evolution from a single peak to dual peaks and back to a single peak. During this fiber transition and spectral evolution, we find that the calculated Brillouin frequency shift (BFS) and Brillouin gain exhibit unique developments based on acoustic-optic coupling theory, providing a methodology for designing and optimizing a desirable Brillouin gain spectrum in M-shaped optical fibers.

View Article and Find Full Text PDF
Article Synopsis
  • The study solves the acoustic Helmholtz equations for W-type acoustic waveguide fibers using separation of variables and derives characteristic equations based on boundary conditions.
  • It analyzes acoustic mode distributions and cut-offs by introducing acoustic normalized frequencies, focusing on the impact of the inner core radius and acoustic velocities on Brillouin gain spectra (BGS).
  • The findings show that acoustic coupling significantly affects the BGS, with the gains from different acoustic modes being sensitive to specific changes in the acoustic core velocities, which aligns with previous experimental data and offers insights for applications in optical fiber technology.
View Article and Find Full Text PDF

This article presents a flexibly tunable microwave photonic filter (MPF) with a dual ultra-narrow passband based on a dual-wavelength and narrow linewidth Brillouin laser. The dual passband of the filter not only exhibits ultra-high frequency selectivity but also allows for flexible and simultaneous tuning of the center frequency and interval of the passbands. In the proposed scheme, the core optical processor of the MPF consists of a dual-ring Brillouin laser resonator, which is composed of a 100-meter main fiber ring cascaded with a 10-meter secondary fiber ring.

View Article and Find Full Text PDF

Bidirectional feedback by fiber Bragg grating arrays (FBGAs) reduced the loss of the cavity and increased stimulated Brillouin scattering (SBS) gain by bi-directional Stokes wave through FBGA associated Rayleigh feedback of the pump wave. As a result, the Q value of the Brillouin random fiber laser (BRFL) increased significantly, which leads to narrow linewidth. This is different from the ring configuration with unidirectional SBS gain versus dual SBS gain of the same fiber length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!