Deep learning (DL) has present great diagnostic results in fault diagnosis field. However, the poor interpretability and noise robustness of DL-based methods are still the main factors limiting their wide application in industry. To address these issues, an interpretable wavelet packet kernel-constrained convolutional network (WPConvNet) is proposed for noise-robust fault diagnosis, which combines the feature extraction ability of wavelet bases and the learning ability of convolutional kernels together. First, the wavelet packet convolutional (WPConv) layer is proposed, and constraints are imposed to convolutional kernels, so that each convolution layer is a learnable discrete wavelet transform. Second, a soft threshold activation is proposed to reduce the noise component in feature maps, whose threshold is adaptively learned by estimating the standard deviation of noise. Third, we link the cascaded convolutional structure of convolutional neutral network (CNN) with wavelet packet decomposition and reconstruction using Mallat algorithm, which is interpretable in model architecture. Extensive experiments are carried out on two bearing fault datasets, and the results show that the proposed architecture outperforms other diagnosis models in terms of interpretability and noise robustness.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3282599DOI Listing

Publication Analysis

Top Keywords

wavelet packet
16
fault diagnosis
12
interpretable wavelet
8
packet kernel-constrained
8
kernel-constrained convolutional
8
convolutional network
8
noise-robust fault
8
interpretability noise
8
noise robustness
8
convolutional kernels
8

Similar Publications

The early fault characteristics of rolling bearings are weak, especially in a strong noise environment, which are more difficult to extract; therefore, a method based on wavelet packet decomposition, multi-verse optimizer, and maximum correlated kurtosis deconvolution for weak fault feature extraction of rolling bearings is proposed. First, the original vibration signal is decomposed using wavelet packet decomposition, followed by proposing a signal reconstruction method combining the Pearson correlation coefficient and energy ratio to effectively remove noise from the original signal. Second, the parameters L and M of Maximum Correlated Kurtosis Deconvolution (MCKD) are optimized using the multi-verse optimizer algorithm to obtain optimal filter settings.

View Article and Find Full Text PDF

Parkinson's disease (PD) prevalence is projected to reach 12 million by 2040. Wearable sensors offer a promising approach for comfortable, continuous tremor monitoring to optimize treatment strategies. Here, we present a wristwatch-like triboelectric sensor (WW-TES) inspired by automatic watches for unobtrusive PD tremor assessment.

View Article and Find Full Text PDF

Under heavy load conditions, bearings are subjected to non-uniform and frequently changing loads, which leads to randomness in the spatial distribution of bearing degradation characteristics. Aiming at the problem that the traditional degradation index cannot accurately reflect the degradation state of heavy-duty bearings in the whole life cycle, a new degradation evaluation method based on multi-domain features is proposed in this paper, which aims to capture the early degradation point of heavy-duty bearings and characterize their degradation trend. Firstly, the energy entropy feature is obtained by improving the wavelet packet decomposition, and the original multi-domain feature set is constructed by combining the time domain and frequency domain features.

View Article and Find Full Text PDF

Due to their specially designed structures, the partial discharge detection of hybrid high-voltage power transmission lines (HHVPTL) composed of overhead lines and power cables has made it difficult to monitor the conditions of power transmission lines. A parallel recognition method for partial discharge patterns of HHVPTLs is proposed by implementing wavelet analysis and improved backpropagation neural network (BPNN) to address the shortcomings of low efficiency, poor accuracy, and inability to parallel analysis of current partial discharge (PD) detection algorithms for HHVPTLs. Firstly, considering the non-smoothness of the partial discharge of the HHVPTLs, the wavelet packet decomposition algorithm is implemented to decompose the PD of the HHVPTL and resolve the relevant signal indicators to form the attribute vectors.

View Article and Find Full Text PDF

A detection sensor for mid-infrared ammonia (NH) has been developed according to wavelength modulation spectroscopy-tunable diode laser absorption spectroscopy (WMS-TDLAS) technology, which can be applied in the chemical and aquaculture industries. A 9.06 µm quantum cascade laser (QCL) and a 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!