A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrophobic modification of a PVDF hollow fiber membrane by plasma activation and silane grafting for membrane distillation. | LitMetric

Hydrophobic modification of a PVDF hollow fiber membrane by plasma activation and silane grafting for membrane distillation.

Water Sci Technol

Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, China E-mail:

Published: June 2023

Polyvinylidene fluoride (PVDF) hollow fibers were hydrophobically modified using a simple and scalable method of plasma activation and silane grafting. The effects of plasma gas, applied voltage, activation time, silane type, and concentration were investigated according to the membrane hydrophobicity and direct contact membrane distillation (DCMD) performance. Two kinds of silane were used, including methyl trichloroalkyl silane (MTCS) and 1H,1H,2H,2H-perfluorooctane trichlorosilane silanes (PTCS). The membranes were characterized by techniques such as Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. The contact angle of the pristine membrane was 88°, which increased to 112°-116° after modification. Meanwhile, the pore size and porosity decreased. In DCMD, the maximum rejection reached 99.95% by the MTCS-grafted membrane, while the flux decreased by 35% and 65% for the MTCS- and PTCS-grafted membranes, respectively. Treating humic acid-contained solution, the modified membrane showed steadier water flux and higher salt rejection than the pristine membrane, and 100% flux recovery was achieved by simple water flushing. This two-step method of plasma activation and silane grafting is very simple and effective to improve the hydrophobicity and DCMD performance of PVDF hollow fibers. However, further study on improving the water flux should be carried out.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2023.166DOI Listing

Publication Analysis

Top Keywords

pvdf hollow
12
plasma activation
12
activation silane
12
silane grafting
12
membrane
8
membrane distillation
8
hollow fibers
8
method plasma
8
dcmd performance
8
contact angle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!