Pyrolysis bio-oils, one of the products of lignocellulosic biomass pyrolysis, have the potential to be widely used as fuels. The chemical composition of bio-oils is very complicated as they contain hundreds, if not thousands, of different, mostly oxygen-containing, compounds with a wide distribution of physical properties, chemical structures, and concentrations. Detailed knowledge of bio-oil composition is crucial for optimizing both the pyrolysis processes and for any subsequent upgrading into a more viable fuel resource. Here we report the successful use of low-field, or benchtop, nuclear magnetic resonance (NMR) spectrometers in the analysis of pyrolysis oils. Pyrolysis oils from four different feedstocks were derivatized and analyzed using F NMR techniques. The NMR results compare favorably with titrations for total carbonyl content. In addition, the benchtop NMR spectrometer proves able to reveal key spectral features, thus allowing the quantification of different carbonyl groups, such as aldehydes, ketones and quinones. Benchtop NMR spectrometers are typically compact, cheaper than their superconducting counterparts and do not require cryogens. Their use will make NMR analysis of pyrolysis oils easier and more accessible to a wide range of different potential users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202300625 | DOI Listing |
Bioresour Technol
December 2024
Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina. Electronic address:
Tenebrio molitor has gained attention as a potential solution for plastic pollution. This study explored the biodegradation of polystyrene (PS) by mealworms co-fed with rice bran (RB) under an optimized rearing scheme. The RB co-diet significantly increased PS consumption by two-fold compared to wheat bran (WB).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Tehran, Iran; Faculty of Science, Department of Physics, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin, Iran.
Here, the real time pyrolysis characteristics, the degradation degree and the aging time of the transformer oil have been investigated using laser induced fluorescence (LIF) spectroscopy. The signal elevation up to four-fold and the lucid red shift up to 10 nm are obtained against those of fresh oil. The fluorescence signal and the corresponding spectral shift are demonstrated to follow a linear correlation in terms of aging time.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16801, USA; Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA, 16801, USA; Institute of Energy and the Environment, Pennsylvania State University, University Park, PA, 16801, USA. Electronic address:
Foods
October 2024
School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
Int J Mol Sci
October 2024
Chemical & Petroleum Engineering Department, F1 Building, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates.
The exhaustion of conventional light oils necessitates the shift towards unconventional sources such as biomass, heavy oil, oil shale, and coal. Non-catalytic thermal cracking by a free radical mechanism is at the heart of the upgrading, prior to refining into valuable products. However, thermal pyrolysis is hindered by the formation of asphaltenes, precursors to coke, limiting cracking, causing equipment fouling, and reducing product stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!