The photoexcitation of weakly bound complexes can lead to several decay pathways, depending on the nature of the potential energy surfaces. Upon excitation of a chromophore in a weakly bound complex, ionization of its neighbor upon energy transfer can occur due to a unique relaxation process known as intermolecular Coulombic decay (ICD), a phenomenon of renewed focus owing to its relevance in biological systems. Herein, we report the evidence for outer-valence ICD induced by multiphoton excitation by near-ultraviolet radiation of 4.4 eV photons, hitherto unknown in molecular systems. In the binary complexes of 2,6-difluorophenylacetylene with aliphatic amines, a resonant two-photon excitation localized on the 2,6-difluorophenylacetylene chromophore results in the formation of an amine cation following an outer-valence ICD process. The unique trends in experimentally observed translational energy distribution profiles of the amine cations following hydrogen bond dissociation, analyzed with the help of electronic structure and molecular dynamics calculations, revealed the presence of a delicate interplay of roaming dynamics, methyl-rotor dynamics, and binding energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c01039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!