Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vocal behavior plays a crucial evolutionary role. In the case of birds, song is critically important in courtship, male-male competition and other key behaviors linked to reproduction. However, under natural conditions, a variety of avian species live in close proximity and share an 'acoustic landscape'. Therefore, they need to be able to differentiate their calls or songs from those of other species and also from those of other individuals of the same species. To do this efficiently, birds display a remarkable diversity of sounds. For example, in the case of vocal learners, such as oscine passerines (i.e. songbirds), complex sequences and subtle acoustic effects are produced through the generation of complex neuromuscular instructions driving the vocal organ, which is remarkably conserved across approximately 4000 oscine species. By contrast, the majority of the sister clade of oscines, the suboscine passerines, are thought not to be vocal learners. Despite this, different suboscine species can generate a rich variety of songs and quite subtle acoustic effects. In the last few years, different suboscine species have been shown to possess morphological adaptations that allow them to produce a diversity of acoustic characteristics. Here, we briefly review the mechanisms of sound production in birds, before considering three suboscine species in more detail. The examples discussed in this Review, integrating biological experiments and biomechanical modeling using non-linear dynamical systems, illustrate how a morphological adaptation can produce complex acoustic properties without the need for complex neuromuscular control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.227975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!