The Life of and Non- Yeasts in Drinking Wine.

Microorganisms

Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain.

Published: April 2023

Drinking wine is a processed beverage that offers high nutritional and health benefits. It is produced from grape must, which undergoes fermentation by yeasts (and sometimes lactic acid bacteria) to create a product that is highly appreciated by consumers worldwide. However, if only one type of yeast, specifically , was used in the fermentation process, the resulting wine would lack aroma and flavor and may be rejected by consumers. To produce wine with a desirable taste and aroma, non- yeasts are necessary. These yeasts contribute volatile aromatic compounds that significantly impact the wine's final taste. They promote the release of primary aromatic compounds through a sequential hydrolysis mechanism involving several glycosidases unique to these yeasts. This review will discuss the unique characteristics of these yeasts (, , , , , , , , and others) and their impact on wine fermentations and co-fermentations. Their existence and the metabolites they produce enhance the complexity of wine flavor, resulting in a more enjoyable drinking experience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224428PMC
http://dx.doi.org/10.3390/microorganisms11051178DOI Listing

Publication Analysis

Top Keywords

non- yeasts
8
drinking wine
8
aromatic compounds
8
yeasts
6
wine
6
life non-
4
yeasts drinking
4
wine drinking
4
wine processed
4
processed beverage
4

Similar Publications

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Response Surface Methodology for Optimization of Media Components for Production of Lipase from KUBT4.

Arch Razi Inst

June 2024

Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).

Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.

View Article and Find Full Text PDF

A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.

View Article and Find Full Text PDF

Nucleotide Distribution Analysis of 5'UTRs in Genome-Scale Directs their Redesign and Expression Regulation in Yeast.

Metab Eng

December 2024

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Non-conventional yeasts have emerged as important sources of valuable products in bioindustries. However, tools for the control of expression are limited in these hosts. In this study, we aimed to excavate the tools for the regulation of translation that are often overlooked.

View Article and Find Full Text PDF

Turning the non-pathogenic yeast Starmerella bombicola into a powerful long-chain dicarboxylic acid production host.

Bioresour Technol

December 2024

BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium. Electronic address:

Bio-based long-chain dicarboxylic acids (LCDAs) are in high demand in the polymer industry. These compounds have diverse applications as building blocks for polymers with distinct features, which lead to a fast-growing global LCDA market. However, bio-based LCDA production is currently limited in Europe as established processes are using the pathogenic yeast Candida tropicalis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!