The triazine-based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen-rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron-hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post-synthetic modification strategy to fabricate superhydrophilic tCOF-based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz-FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz-FeOOH with good hydrophilic properties. The well-defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz-FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF-based hydrophilic functional materials for a wide range of practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202300163 | DOI Listing |
J Chromatogr A
December 2024
College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Dharma Samaj College Aligarh, UP, 202001.
Covalent triazine frameworks, with their ordered pores and crystalline structure that exhibit heteroatom impacts, demonstrate outstanding chemical stability, making them designable for charge storage applications. In this study, the triazine-based covalent organic frameworks (TPT@BDA-COF) was synthesized using 4',4''',4'''''-(1,3,5-Triazine-2,4,6-triyl) tris (([1,1'-biphenyl]-4-amine)) (TPT) and 4,4'-Oxydibenzaldehyde (BDA) following polycondensation process. Interestingly, these resulted in the fabrication of a well-connected, orderly porous crystalline structure, redox-active moiety, and significantly high doping atomic percentages of N (~13.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States.
The design and synthesis of photoactive metal-free 2D materials for selective heterogeneous photoredox catalysis continue to be challenging due to issues related to nonrecyclability, and limited photo- and chemical stability. Herein, we report the photocatalytic properties of a triazine-based porous COF, , which is found to be capable of facilitating both SET (single electron transfer) for photocatalytic reductive debromination of phenacyl bromide in absence of oxygen and generation of reactive oxygen species (ROS) for benzylamine photo-oxidation in the presence of oxygen, respectively, under visible light irradiation. Inspired by the latter results, we further systematically investigated different-sized benzylamine substrates in this single-component reaction and compared the results with an analogous COF () exhibiting a larger pore size.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
The massive CO emissions from continuous increases in fossil fuel consumption have caused disastrous environmental and ecological crises. Covalent organic frameworks (COFs) hold the potential to convert CO and water into value-added chemicals and O to mitigate this crisis. However, their activity and selectivity are very low under conditions close to natural photosynthesis.
View Article and Find Full Text PDFFood Chem
March 2025
Chinese Academy of Inspection and Quarantine, Beijing, 100176, China. Electronic address:
The monitoring of phytoestrogen levels in food is essential for ensuring food safety; however, the low concentrations and complex matrices pose significant technical challenges. In this study, covalent triazine based organic polymers (TCOPs) was innovatively synthesized in situ on the surface of a steel substrate (TCOPs-S). These novel TCOPs-S were utilized as adsorbents for solid-phase microextraction and ionization sources in ambient mass spectrometry, enabling the rapid detection of phytoestrogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!