Biosynthesis of 1,3-Propanediol via a New Pathway from Glucose in .

ACS Synth Biol

Beijing Key Laboratory of Bioprocess, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology. 15th, Beisanhuan East Road, Beijing 100029, People's Republic of China.

Published: July 2023

1,3-Propanediol (1,3-PDO), an important dihydric alcohol, is widely used in textiles, resins, and pharmaceuticals. More importantly, it can be used as a monomer in the synthesis of polytrimethylene terephthalate (PTT). In this study, a new biosynthetic pathway is proposed to produce 1,3-PDO using glucose as a substrate and l-aspartate as a precursor without the addition of expensive vitamin B. We introduced a 3-HP synthesis module derived from l-aspartate and a 1,3-PDO synthesis module to achieve the de novo biosynthesis. The following strategies were then pursued that included screening key enzymes, optimizing the transcription and translation levels, enhancing the precursor supply of l-aspartate and oxaloacetate, weakening the tricarboxylic acid (TCA) cycle, and blocking competitive pathways. We also used transcriptomic methods to analyze the different gene expression levels. Finally, an engineered strain produced 6.41 g/L 1,3-PDO with a yield of 0.51 mol/mol glucose in a shake flask and 11.21 g/L in fed-batch fermentation. This study provides a new pathway for production of 1,3-PDO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.3c00122DOI Listing

Publication Analysis

Top Keywords

synthesis module
8
13-pdo
5
biosynthesis 13-propanediol
4
13-propanediol pathway
4
pathway glucose
4
glucose 13-propanediol
4
13-propanediol 13-pdo
4
13-pdo dihydric
4
dihydric alcohol
4
alcohol textiles
4

Similar Publications

Circadian rhythm gene cryptochrome 2 (Cry2) interacts with lipid metabolism to promote vascular aging.

Arch Gerontol Geriatr

January 2025

Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China. Electronic address:

Background: Vascular aging is the basis of many chronic diseases of the aged, such as hypertension, coronary heart disease and stroke.

Objective: This study aims to deepen our understanding of the pathological mechanisms of vascular aging by combining multiple big data research methods, and reveal potential therapeutic targets and biomarkers.

Methods: WGCNA method was used to integrate the aortic transcriptome data of multiple age stages, and extract the key module and key pathway.

View Article and Find Full Text PDF

Bacterial sensor evolved by decreasing complexity.

Proc Natl Acad Sci U S A

February 2025

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.

Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.

View Article and Find Full Text PDF

Environmental conditions influence the maternal deposition of hormones into eggs, which is hypothesized to adaptively modify developmental outcomes in offspring. However, most ecosystems harbour environmental contaminants capable of disrupting endocrine signaling, and maternal exposure to these compounds has the potential to further alter offspring traits. Studies rarely examine maternally derived hormones and contaminants along with offspring phenotypes, and we know little about their interrelationships and potential interactions.

View Article and Find Full Text PDF

A network-enabled pipeline for gene discovery and validation in non-model plant species.

Cell Rep Methods

January 2025

MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Identifying key regulators of important genes in non-model crop species is challenging due to limited multi-omics resources. To address this, we introduce the network-enabled gene discovery pipeline NEEDLE, a user-friendly tool that systematically generates coexpression gene network modules, measures gene connectivity, and establishes network hierarchy to pinpoint key transcriptional regulators from dynamic transcriptome datasets. After validating its accuracy with two independent datasets, we applied NEEDLE to identify transcription factors (TFs) regulating the expression of cellulose synthase-like F6 (CSLF6), a crucial cell wall biosynthetic gene, in Brachypodium and sorghum.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum) is an important crop but frequently experiences saline-alkali stress. Our previous studies have shown that exogenous spermidine (Spd) could significantly enhance the saline-alkali resistance of tomato seedlings, in which a high concentration of Spd and jasmonic acid (JA) exerted important roles. However, the mechanism of Spd and JA accumulation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!