is a necrotrophic pathogen that causes Stagonospora nodorum blotch (SNB) in wheat. Wheat varieties grown in Virginia vary in susceptibility to SNB, and the severity of SNB varies across locations and years. However, the impacts of wheat genetic backgrounds and environments on SNB severity and the structure of populations in the region have not been well studied. Thus, a population genetic study was conducted utilizing isolates collected from different wheat varieties and locations in Virginia. A total of 320 isolates were collected at seven locations over 2 years from five wheat varieties. Isolates were genotyped using multilocus simple sequence repeat markers, and necrotrophic effector (NE) and mating type genes were amplified using gene-specific primers. Wheat varieties varied in susceptibility to SNB, but site-specific environmental conditions were the primary drivers of disease severity. Fungal populations were genetically diverse, but no genetic subdivision was observed among locations or varieties. The ratio of the two mating type idiomorphs was not significantly different from 1:1, consistent with the population undergoing sexual reproduction. Three major NE genes were detected within the population, but not with equal frequency. However, NE gene profiles were similar for groups of isolates originating from different varieties, suggesting that wheat genetic backgrounds do not differentially select for NEs. There was no evidence of population structure among populations in Virginia and, thus, no support for wheat genetic backgrounds shaping these populations. Finally, although varieties only exhibited moderate resistance to SNB, current levels of resistance are likely to be durable over time and remain a useful tool for integrated management of SNB in the region. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-10-22-0392-R | DOI Listing |
Insects
December 2024
College of Plant Protection, Hebei Agricultural University, Baoding 071001, China.
, an obligate endosymbiont of most aphid species, can influence aphids' host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of remains unclear. To address this issue, six biotypes were tested in this study.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China.
The root is an important organ by which plants directly sense variation in soil moisture. The discovery of drought stress-responsive genes in roots is very important for the improvement of drought tolerance in wheat varieties via molecular approaches. In this study, transcriptome sequencing was conducted on the roots of drought-tolerant wheat cultivar YH1818 seedlings at 0, 2, and 7 days after treatment (DAT).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The trihelix transcription factor, which is a plant-specific family, play a critical role in plant growth and development and stress responses. Drought is the main limiting factor affecting yield of maize (). However, the identification and characterization of this gene family in maize and its biological functions in response to drought stress have not been reported.
View Article and Find Full Text PDFFoods
December 2024
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.
The understanding of the characteristics and metabolite changes in waxy and normal maize kernels after cooking is rather limited. This study was designed to meticulously analyze the differences in characteristics and metabolites of these kernels before and after steaming. To cut environmental impacts, samples were obtained by pollinating one ear with mixed pollen.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
The increasing frequency of low-temperature events in spring, driven by climate change, poses a serious threat to wheat production in Northern China. Understanding how low-temperature stress affects wheat yield and its components under varying moisture conditions, and exploring the role of irrigation before exposure to low temperatures, is crucial for food security and mitigating agricultural losses. In this study, four wheat cultivars-semi-spring (YZ4110, LK198) and semi-winter (ZM366, FDC21)-were tested across two years under different conditions of soil moisture (irrigation before low-temperature exposure (IBLT) and non-irrigation (NI)) and low temperatures (-2 °C, -4 °C, -6 °C, -8 °C, and -10 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!