Focal Anticoagulation by Somatic Gene Transfer: Towards Preventing Cardioembolic Stroke.

Heart Lung Circ

The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia. Electronic address:

Published: July 2023

Cardioembolic stroke (CS) has emerged as a leading cause of ischaemic stroke (IS); distinguished by thrombi embolising to the brain from cardiac origins; most often from the left atrial appendage (LAA). Contemporary therapeutic options are largely dependent on systemic anticoagulation as a blanket preventative strategy, yet this does not represent a nuanced or personalised solution. Contraindications to systemic anticoagulation create significant unmedicated and high-risk cohorts, leaving these patients at risk of significant morbidity and mortality. Atrial appendage occlusion devices are increasingly used to mitigate stroke risk from thrombi emerging from the LAA in patients ineligible for oral anticoagulants (OACs). Their use, however, is not without risk or significant cost, and does not address the underlying aetiology of thrombosis and CS. Viral vector-based gene therapy has emerged as a novel strategy to target a spectrum of haemostatic disorders, achieving success through the adeno-associated virus (AAV) based therapy of haemophilia. Yet, thrombotic disorders, such as CS, have had limited exploration within the realm of AAV gene therapy approaches-presenting a gap in the literature and an opportunity for further research. Gene therapy has the potential to directly address the cause of CS by localised targeting of the molecular remodelling that serves to promote thrombosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hlc.2023.05.006DOI Listing

Publication Analysis

Top Keywords

gene therapy
12
cardioembolic stroke
8
atrial appendage
8
systemic anticoagulation
8
focal anticoagulation
4
anticoagulation somatic
4
gene
4
somatic gene
4
gene transfer
4
transfer preventing
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!