A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Digestion kinetics and molecular structural evolution during in vitro digestion of green banana (cv. Giant Cavendish) starch nanoparticles. | LitMetric

Digestion kinetics and molecular structural evolution during in vitro digestion of green banana (cv. Giant Cavendish) starch nanoparticles.

Food Res Int

Department of Food Science, National Chiayi University, No. 300 Syuefu Road, Chiayi City 600355, Taiwan, ROC. Electronic address:

Published: August 2023

Knowledge of digestion mechanism of starch nanoparticles are crucial for their utilization and potential applications. In this study, molecular structural evolution and digestion kinetics of starch nanoparticles from green banana (GBSNPs) during digestion (0-180 min) was investigated. Distinctive topographic changes of the GBSNPs during digestion with decreased particle size and increased surface roughness were detected. The GBSNPs showed markedly decreased average molecular weight and polydispersity in the initial digestion phase (0-20 min), and these two structural characteristics remained nearly unchanged thereafter. The GBSNPs exhibited a B-type polymorph throughout digestion, while their crystallinity decreased with increasing digestion duration. The infrared spectra revealed that the initial digestion phase led to the increased absorbance ratios 1047/1022 and 1047/1035 cm, reflecting the markedly increased short-range molecular order that was substantiated by the blue-shifting of COH-bending band. Logarithm of slope analysis of digestogram revealed that the GBSNPs were digested by a two-phase process that reflected the surface barrier effect exerted by the increased short-range order. The short-range molecular order strengthening induced from the initial digestion phase was responsible for the increased enzymatic resistance. The results can help to elucidate the gastrointestinal fate of starch nanoparticles for their potential applications as health-promoting ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113016DOI Listing

Publication Analysis

Top Keywords

starch nanoparticles
16
initial digestion
12
digestion phase
12
digestion
11
digestion kinetics
8
molecular structural
8
structural evolution
8
green banana
8
potential applications
8
gbsnps digestion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!