Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Knowledge of digestion mechanism of starch nanoparticles are crucial for their utilization and potential applications. In this study, molecular structural evolution and digestion kinetics of starch nanoparticles from green banana (GBSNPs) during digestion (0-180 min) was investigated. Distinctive topographic changes of the GBSNPs during digestion with decreased particle size and increased surface roughness were detected. The GBSNPs showed markedly decreased average molecular weight and polydispersity in the initial digestion phase (0-20 min), and these two structural characteristics remained nearly unchanged thereafter. The GBSNPs exhibited a B-type polymorph throughout digestion, while their crystallinity decreased with increasing digestion duration. The infrared spectra revealed that the initial digestion phase led to the increased absorbance ratios 1047/1022 and 1047/1035 cm, reflecting the markedly increased short-range molecular order that was substantiated by the blue-shifting of COH-bending band. Logarithm of slope analysis of digestogram revealed that the GBSNPs were digested by a two-phase process that reflected the surface barrier effect exerted by the increased short-range order. The short-range molecular order strengthening induced from the initial digestion phase was responsible for the increased enzymatic resistance. The results can help to elucidate the gastrointestinal fate of starch nanoparticles for their potential applications as health-promoting ingredients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!