AI Article Synopsis

  • The study explores how heating time and induction methods affect the properties and digestion behavior of rice bran protein aggregates (RBPAs) in emulsion gels.
  • Suitable heating times (1-6 hours) improve the adsorption of protein aggregates at the oil/water interface, while excessive heating (7-10 hours) leads to protein precipitation and reduced performance.
  • Double-cross-linked emulsion gels showed better water holding capacity and slower release of fatty acids during digestion, highlighting their potential for creating low-fat food alternatives.

Article Abstract

To investigate the effects of heating time and induction methods on the physicochemical properties and in vitro digestion behavior of emulsion gels, rice bran protein aggregates (RBPAs) were formed by acid-heat induction (90 °C, pH 2.0) and the emulsion gels were further prepared by adding GDL or/and laccase for single/double cross-linked induction. Heating time affected the aggregation and oil/water interfacial adsorption behavior of RBPAs. Suitable heating (1-6 h) was conducive to faster and more adsorption of aggregates at the oil/water interface. While excessive heating (7-10 h) resulted in protein precipitation, which inhibited the adsorption at the oil/water interface. The heating time at 2, 4, 5 and 6 h was thus chosen to prepare the subsequent emulsion gels. Compared with the single cross-linked emulsion gels, the double-cross-linked emulsion gels showed higher water holding capacity (WHC). After simulated gastrointestinal digestion, the single/double cross-linked emulsion gels all exhibited slow-release effect on free fatty acid (FFA). Moreover, the WHC and final FFA release rate of emulsion gels were closely related to the surface hydrophobicity, molecular flexibility, sulfhydryl, disulfide bond and interface behavior of RBPAs. Generally, these findings proved the potential of emulsion gels in designing fat alternatives, which could provide a novel technique for the fabrication of low-fat food.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112976DOI Listing

Publication Analysis

Top Keywords

emulsion gels
36
heating time
16
emulsion
9
gels
9
physicochemical properties
8
properties vitro
8
vitro digestion
8
digestion behavior
8
behavior emulsion
8
rice bran
8

Similar Publications

Microwave-assisted extraction of pectin from Dillenia indica (DI) fruit was optimized using Box-Behnken design to maximize yield and quality. Parameters such as solid:solvent (1:10-1:30), microwave power (200-600 W), and extraction time (4-10 min) were varied to determine the optimal conditions. Through experimentation, the optimized extraction parameters were identified as 1:23.

View Article and Find Full Text PDF

Aqueous two-phase systems (ATPSs) have primarily been developed in the form of emulsions to enhance their utilization in green and biocompatible applications. However, numerous challenges have arisen in forming stable and processable water-in-water (W/W) emulsion systems, as well as in fine-tuning the interconnectivity of their internal structure, which can significantly impact their performance. To effectively address these challenges, we elucidate, for the first time, the root cause of the poor stability of W/W emulsions.

View Article and Find Full Text PDF

Regulation of whey protein emulsion gel's structure with pullulan to enhance astaxanthin bioaccessibility.

Carbohydr Polym

March 2025

College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China. Electronic address:

In this study, the potential of using an emulsion gel based on whey protein concentrate (WPC) and pullulan (PUL) to encapsulate and deliver astaxanthin (AST) was investigated. PUL concentration was observed to affect the microstructure of WPC/PUL/AST emulsion gels, and the performance of emulsion gels was evaluated by encapsulation efficiency, simulated gastrointestinal digestion, storage stability, hardness, and water holding capacity tests. The WPC/PUL/AST emulsion gels had the highest encapsulation efficiency, gastrointestinal digestion retention, and bioaccessibility of (91.

View Article and Find Full Text PDF

Rheological Properties of Emulsions Stabilized by Cellulose Derivatives with the Addition of Ethyl Alcohol.

Materials (Basel)

December 2024

Division of Chemical Engineering and Equipment, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.

The paper presents the results of research on the rheological properties and stability of oil-in-water emulsions containing cellulose derivatives: methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. The continuous phase of the emulsion was a 70% ethanol (EtOH) solution by volume. The dispersed phase consisted of mineral, linseed, and canola oils (20% by volume).

View Article and Find Full Text PDF

The Effects of Cooking Methods on Gel Properties, Lipid Quality, and Flavor of Surimi Gels Fortified with Antarctic Krill () Oil as High Internal Phase Emulsions.

Foods

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

In this study, silver carp surimi products enriched with Antarctic krill oil high internal phase emulsions (AKO-HIPEs) were cooked using steaming (STE), microwave heating (MIC), and air-frying (AIR), respectively. The gel and flavor properties, lipid quality and stability were investigated. Compared to the MIC and AIR groups, the STE surimi gel added with HIPEs had better texture properties, exhibiting higher water-holding capacity and a more homogeneous structure, while the air-frying treatment resulted in visually brighter surimi products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!