In this study, the presence of phenolic compounds derived from four Solanaceae fruits (tomato, pepino, tamarillo, and goldenberry) during gastrointestinal digestion and the effect of these compounds on human gut microbiota was investigated. The results indicated that the total phenolic content of all Solanaceae fruits were increased during digestion. Furthermore, the targeted metabolic analysis identified 296 compounds, of which 71 were changed after gastrointestinal digestion in all Solanaceae fruits. Among these changed phenolic compounds, 51.3% phenolic acids and 91% flavonoids presented higher bioaccessibility in pepino and tamarillo, respectively. Moreover, higher levels of glycoside-formed phenolic acids, including dihydroferulic acid glucoside and coumaric acid glucoside, were found in tomato fruits. In addition, tachioside showed the highest bioaccessibility in goldenberry fruits. The intake of Solanaceae fruits during the in vitro fermentation decreased the Firmicutes/Bacteroidetes ratio (F/B) compared with the control (∼15-fold change on average), and goldenberry fruits showed the best effect (F/B = 2.1). Furthermore, tamarillo significantly promoted the growth of Bifidobacterium and short-chain fatty acids production. Overall, this study revealed that Solanaceae fruits had different phenolic compound profiles and health-promoting effects on the gut microbiota. It also provided relevant information to improve the consumption of Solanaceae fruits, mainly tamarillo and goldenberry fruits, due to their gut health-promoting properties, as functional foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.112968 | DOI Listing |
BMC Plant Biol
January 2025
School of Engineering, Dali University, Dali, Yunnan Province, China.
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
Background: MicroRNA159 (miR159) is a conserved miRNA found in various plant species. By regulating GAMYB-like transcription factors, miR159 is involved in diverse biological processes. , a significant traditional Chinese orchid, has unique flower shape and elegant fragrance.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China. Electronic address:
Preservation and shelf-life extension are of paramount importance for dried goji berry, especially those dehydrated using pulsed vacuum drying (PVD), which are generally applied for the high-quality dried products in the markets. This study compared the storage stability of dried goji berry dehydrated using PVD versus conventional hot wind drying (HWD), focusing on the complex interactions between packaging conditions and physicochemical compounds during accelerated storage. The results showed that PVD-dried goji berry exhibited higher browning degree (2.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:
Steroidal glycoalkaloids (SGAs) are specialized metabolites in Solanaceae that serve as defensive compounds and undergo significant compositional changes during fruit ripening. This study explored the roles of transcription factors SlNOR and SlNOR-like1 in SGAs biosynthesis during tomato fruit development. UPLC-MS/MS revealed dynamic changes in four major SGAs: tomatidine, β-tomatine, α-tomatine, and Esculeoside A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!