Enhanced hydrolysis of sludges during fermentation is an important factor to achieve solubilization of complex carbon sources and increase the amount of soluble COD that microorganisms could use as food during biological nutrient removal processes. This research shows that a combination of mixing, bioaugmentation, and co-fermentation can be used to increase the hydrolysis of sludges and enhanced the production of volatile fatty acids (VFA). Mixing of primary sludge (PS) at 350 revolutions per minute (RPM) during fermentation increased the hydrolysis of the sludge and increased the soluble chemical oxygen demand (sCOD) by 72% compared to no mixing. Mixing also increased the production of VFA by 60% compared to no mixing conditions. PS hydrolysis was also evaluated using bioaugmentation with the bacteria Bacillus amyloliquefacients, a known producer of the biosurfactant surfactin. Results showed that bioaugmentation enhanced the hydrolysis of the PS by increasing the amount of soluble carbohydrates and soluble proteins present in the form of sCOD. Methanogenesis experiments performed with co-fermentation of decanted primary sludge (PS) and raw waste-activated sludge (WAS) at 75:25 and 50:50 ratios displayed a decreased in production of total biogas by 25.58% and 20.95% and a reduction on methane production by 20.00% and 28.76% respectively, compared to co-fermentation of raw sludges. Compared to fermentation of the sludges separately, co-fermentation of PS and WAS increased the production of VFA and it was determined that 50:50 was the optimum co-fermentation ratio for production of VFA while reducing the reintroduction of nutrients produced during the fermentation process to BNR processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138984DOI Listing

Publication Analysis

Top Keywords

production vfa
12
volatile fatty
8
enhanced hydrolysis
8
hydrolysis sludges
8
amount soluble
8
primary sludge
8
compared mixing
8
increased production
8
production
7
sludges
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!