Sunlight-driven intimately coupled photocatalysis and biodegradation (SDICPB): A sustainable approach for enhanced detoxification of triclosan.

Chemosphere

School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India. Electronic address:

Published: September 2023

Triclosan is considered as recalcitrant contaminant difficult to degrade from the contaminated wastewater. Thus, promising, and sustainable treatment method is necessary to remove triclosan from the wastewater. Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging, low-cost, efficient, and eco-friendly method for the removal of recalcitrant pollutants. In this study BiOI photocatalyst coated bacterial biofilm developed at carbon felt for efficient degradation and mineralization of triclosan was studied. Based on the characterization of BiOI prepared using methanol had lower band gap 1.85 eV which favors lower recombination of electron-hole pair and higher charge separation which ascribed to enhanced photocatalytic activity. ICPB exhibits 89% of triclosan degradation under direct sunlight exposure. The results showed that production of reactive oxygen species hydroxyl radical and superoxide radical anion played crucial role in the degradation of triclosan into biodegradable metabolites further the bacterial communities mineralized the biodegradable metabolites into water and carbon dioxide. The confocal laser scanning electron microscope results emphasized that interior of the biocarrier shows a large number of live bacterial cells existing in the photocatalyst-coated carrier, where the little toxic effect on bacterial biofilm occurred on the exterior of the carrier. The extracellular polymeric substances characterization result remarkable confirms that which could act as sacrificial agent of photoholes further helped by preventing the toxicity to the bacterial biofilm from the reactive oxygen species and triclosan. Hence, this promising approach can be a possible alternative method for the wastewater treatment polluted with triclosan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139210DOI Listing

Publication Analysis

Top Keywords

bacterial biofilm
12
intimately coupled
8
coupled photocatalysis
8
photocatalysis biodegradation
8
triclosan
8
reactive oxygen
8
oxygen species
8
biodegradable metabolites
8
bacterial
5
sunlight-driven intimately
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!