A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The ubiquitin-proteasome system and learning-dependent synaptic plasticity - A 10 year update. | LitMetric

Over 25 years ago, a seminal paper demonstrated that the ubiquitin-proteasome system (UPS) was involved in activity-dependent synaptic plasticity. Interest in this topic began to expand around 2008 following another seminal paper showing that UPS-mediated protein degradation controlled the "destabilization" of memories following retrieval, though we remained with only a basic understanding of how the UPS regulated activity- and learning-dependent synaptic plasticity. However, over the last 10 years there has been an explosion of papers on this topic that has significantly changed our understanding of how ubiquitin-proteasome signaling regulates synaptic plasticity and memory formation. Importantly, we now know that the UPS controls much more than protein degradation, is involved in plasticity underlying drugs of abuse and that there are significant sex differences in how ubiquitin-proteasome signaling is used for memory storage processes. Here, we aim to provide a critical 10-year update on the role of ubiquitin-proteasome signaling in synaptic plasticity and memory formation, including updated cellular models of how ubiquitin-proteasome activity could be regulating learning-dependent synaptic plasticity in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323321PMC
http://dx.doi.org/10.1016/j.neubiorev.2023.105280DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
24
learning-dependent synaptic
12
ubiquitin-proteasome signaling
12
ubiquitin-proteasome system
8
seminal paper
8
protein degradation
8
plasticity memory
8
memory formation
8
plasticity
7
ubiquitin-proteasome
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!