Black-odorous urban rivers can serve as reservoirs for heavy metals and other pollutants, in which sewage-derived labile organic matter triggering the water blackening and odorization largely determine the fate and ecological impact of the heavy metals. Nonetheless, information on the pollution and ecological risk of heavy metals and their reciprocal impact on microbiome in organic matter-polluted urban rivers remain unknown. In this study, sediment samples were collected and analyzed from 173 typical black-odorous urban rivers in 74 cities across China, providing a comprehensive nationwide assessment of heavy metal contamination. The results revealed substantial contamination levels of 6 heavy metals (i.e., Cu, Zn, Pb, Cr, Cd, and Li), with average concentrations ranging from 1.85 to 6.90 times higher than their respective background values in soil. Notably, the southern, eastern, and central regions of China exhibited particularly elevated contamination levels. In comparison to oligotrophic and eutrophic waters, the black-odorous urban rivers triggered by organic matter exhibited significantly higher proportions of the unstable form of these heavy metals, indicating elevated ecological risks. Further analyses suggested the critical roles of organic matter in shaping the form and bioavailability of heavy metals through fueling microbial processes. In addition, most heavy metals had significantly higher but varied impact on the prokaryotic populations relative to eukaryotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131781 | DOI Listing |
Sci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFSci Rep
December 2024
National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, 102300, China.
Manganese (Mn) is a known toxicant and an essential trace element, and it plays an important role in various mechanisms in relation to cardiovascular health. However, epidemiological studies of the association between blood Mn and cardiovascular diseases (CVD) among U.S.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India, 695019.
The study presents findings from physico-chemical and elemental analyses of fresh faecal matter from a residential apartment in Thiruvananthapuram, Kerala, India. Samples were taken every 8-10 days over 4 months to account for variability and establish baseline data. The study also examines the influence of dietary patterns and toilet cleaners on faecal sludge properties.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!