Three novel antioxidant candidates based on phenolic polyketide, monoacetylphloroglucinol (MAPG), a natural antibiotic compound produced by plant growth-promoting rhizobacteria (PGPR), F113 have been proposed. Initially, a green and highly efficient route to the synthesis of MAPG and its two analogues from phloroglucinol (PG) has been developed. Afterward, their rational mechanism of antioxidant activity has been investigated based on thermodynamic descriptors involved in the double (/) radical trapping processes. These calculations have been performed using the systematic density functional theory (DFT) method at the B3LYP/Def2-SVP level of theory in the gas phase and aqueous solution. Our findings reveal that the double formal hydrogen atom transfer (df-HAT) mechanism is preferred in the gas phase, while the double sequential proton loss electron transfer (dSPLET) mechanism is preferred in aqueous solution for all MAPGs. The 6-OH group represents the most favorable site for trapping radical species for all MAPGs, which is supported by the K values obtained from DFT calculations. The role of acyl substituents on the PG ring has been comprehensively discussed. The presence of acyl substituents has a strong influence on the thermodynamic parameters of the phenolic O-H bond in PG. These results are supported by frontier molecular orbitals (FMOs) analysis, where the addition of acyl substituents increases the chemical reactivity of MAPGs significantly. Based on molecular docking and molecular dynamic simulations (MDs), MAPGs are also predicted to be promising candidates for xanthine oxidase (XO) inhibition.HighlightsThe antioxidant activity of the three synthesized monoacetylphloroglucinols (MAPGs) has been investigated using the density functional theory (DFT) method.Acyl substituents increase the chemical reactivity and antioxidant activity of MAPGs.Double formal hydrogen atom transfer (df-HAT) is the preferred mechanism in the gas phase.Double sequential proton loss electron transfer (dSPLET) seems to be more favored in aqueous solution.MAPGs are expected to be promising xanthine oxidase (XO) inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2023.2225731DOI Listing

Publication Analysis

Top Keywords

xanthine oxidase
12
antioxidant activity
12
acyl substituents
12
monoacetylphloroglucinols mapgs
8
density functional
8
functional theory
8
theory dft
8
gas phase
8
aqueous solution
8
formal hydrogen
8

Similar Publications

Flavonoid-rich extract of Paederia scandens (Lour.) Merrill improves hyperuricemia by regulating uric acid metabolism and gut microbiota.

Food Chem

January 2025

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Paederia scandens (Lour.) Merrill flavonoid-rich extract (PSMF) has shown excellent xanthine oxidase (XOD) inhibitory activity in our previous study. However, the efficacy of PSMF in mitigating hyperuricemia (HUA) remains to be elucidated.

View Article and Find Full Text PDF

Ganoderma resinaceum is a traditional mushroom that contains natural products, including ergothioneine (EGT), which has powerful antioxidant properties in the human body. To increase EGT yield from G. resinaceum, the optimal carbon and nitrogen sources in the culture medium were determined as 20 g/L sucrose and 4 g/L NH4Cl, respectively.

View Article and Find Full Text PDF

Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde.

Int J Mol Sci

January 2025

Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.

View Article and Find Full Text PDF

In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!