Endocrine disrupting chemicals have been known to contribute to the aggravation of inflammatory diseases including asthma. We aimed to investigate the effects of mono-n-butyl phthalate (MnBP) which is one of the representing phthalates, and its antagonist in an eosinophilic asthma mouse model. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) with alum and followed by three nebulized OVA challenges. MnBP was administered through drinking water administration throughout the study period, and its antagonist, apigenin, was orally treated for 14 days before OVA challenges. Mice were assessed for airway hyperresponsiveness (AHR), differential cell count and type 2 cytokines in bronchoalveolar lavage fluid were measured in vivo. The expression of the aryl hydrocarbon receptor was markedly increased when MnBP was administered. MnBP treatment increased AHR, airway inflammatory cells (including eosinophils), and type 2 cytokines following OVA challenge compared to vehicle-treated mice. However, apigenin treatment reduced all asthma features, such as AHR, airway inflammation, type 2 cytokines, and the expression of the aryl hydrocarbon receptor in MnBP-augmented eosinophilic asthma. Our study suggests that MnBP exposure may increase the risk of eosinophilic inflammation, and apigenin treatment may be a potential therapy for asthma exacerbated by endocrine-disrupting chemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315829PMC
http://dx.doi.org/10.1111/jcmm.17804DOI Listing

Publication Analysis

Top Keywords

aryl hydrocarbon
12
hydrocarbon receptor
12
eosinophilic asthma
12
type cytokines
12
ova challenges
8
mnbp administered
8
expression aryl
8
ahr airway
8
apigenin treatment
8
asthma
6

Similar Publications

Molecular insights into a distinct class of terpenoid cyclases.

Nat Commun

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.

Article Synopsis
  • Terpenoid cyclases (TCs) are crucial for producing diverse natural compounds, with the BcABA3 enzyme from the fungus Botrytis cinerea representing a unique type that deviates from typical TCs.
  • Crystal structures of BcABA3 and related enzymes show they have an all-α-helix fold and interact with specific substrates through a unique binding mechanism.
  • Findings suggest significant potential for exploring more uncharacterized terpenoids synthesized by these enzymes, highlighting the need for further research in this area.
View Article and Find Full Text PDF

Photoinduced Regiodivergent and Enantioselective Cross-Coupling of Glycine Derivatives with Hydrocarbon Feedstocks.

J Am Chem Soc

January 2025

Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Regiodivergent asymmetric synthesis represents a transformative strategy for the efficient generation of structurally diverse chiral products from a single set of starting materials, significantly enriching their enantiomeric composition. However, the design of radical-mediated regiodivergent and enantioselective reactions that can accommodate a wide range of functional groups and substrates has posed significant challenges. The obstacles primarily lie in switching the regioselectivity and achieving high enantiodiscrimination, especially when dealing with high-energy intermediates.

View Article and Find Full Text PDF

N-Doped Zigzag-Type Aromatic Truncated Cone Belts.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Zigzag aromatic hydrocarbon belts, ultrashort segments of zigzag carbon nanotubes, have been fascinating in the chemistry community for more than a half century because of their aesthetically appealing molecular nanostructures and tantalizing applications. Precise introduction of heteroatoms of distinct electronegativity and electronic configuration can create various heterocyclic aromatic nanobelts with novel physical and chemical properties. Here, we report the synthesis of unprecedented N-doped zigzag-type aromatic belts, belt[]pyrrole[]pyridines ( = 6-8), from multiple intramolecular C-C homocoupling reactions of readily available azacalix[](3,5-dibromopyridine)s.

View Article and Find Full Text PDF

Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro.

J Hazard Mater

December 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.

View Article and Find Full Text PDF

Revealing and mitigating the inhibitory effect of serotonin on HRP-mediated protein labelling.

Sci Rep

December 2024

Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!