Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inhibiting the tribological failure of mechanical assemblies which rely on fuels for lubrication is an obstacle to maintaining the lifetime of these systems with low-viscosity and low-lubricity fuels. In the present study, a MoVN-Cu nanocomposite coating was tribologically evaluated for durability in high- and low-viscosity fuels as a function of temperature, load, and sliding velocity conditions. The results indicate that the MoVN-Cu coating is effective in decreasing wear and friction relative to an uncoated steel surface. Raman spectroscopy, transmission electron microscopy, and electron-dispersive spectroscopy analysis of the MoVN-Cu worn surfaces confirmed the presence of an amorphous carbon-rich tribofilm which provides easy shearing and low friction during sliding. Further, the characterization of the formed tribofilm revealed the presence of nanoscale copper clusters overlapping with the carbon peak intensities supporting the tribocatalytic origin of the surface protection. The tribological assessment of the MoVN-Cu coating reveals that the coefficient of friction decreased with increasing material wear and initial contact pressure. These findings suggest that MoVN-Cu is a promising protective coating for fuel-lubricated assemblies due to its adaptive ability to replenish lubricious tribofilms from hydrocarbon environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c01953 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!