Protocol for imaging nuclear pore complexes on isolated nuclei of zebrafish early embryos by field emission scanning electron microscopy.

STAR Protoc

Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Stem Cell Regulation, Guangzhou Laboratory, Guangzhou 510320, China. Electronic address:

Published: September 2023

Here, we present a protocol to observe the three-dimensional surface of nuclear pore complexes (NPCs) of vertebrate early embryos by field emission scanning electron microscopy (FESEM). We describe steps from zebrafish early embryo collection and nuclei exposure to FESEM sample preparation and final NPC state analysis. This approach provides an easy way to observe surface morphology of NPCs from the cytoplasmic side. Alternatively, additional purification steps after nuclei exposure supply intact nuclei for further mass spectrometry analysis or other utilization. For complete details on the use and execution of this protocol, please refer to Shen et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277586PMC
http://dx.doi.org/10.1016/j.xpro.2023.102341DOI Listing

Publication Analysis

Top Keywords

nuclear pore
8
pore complexes
8
zebrafish early
8
early embryos
8
embryos field
8
field emission
8
emission scanning
8
scanning electron
8
electron microscopy
8
nuclei exposure
8

Similar Publications

The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity.

View Article and Find Full Text PDF

The application of sand-clay mixtures is diverse in contemporary engineering practices, with particular emphasis on their shear strength characteristics. This study focused on the estimation of the shear strength of sand-clay mixtures using the artificial neural network (ANN) and low-field nuclear magnetic resonance (NMR) spectroscopy. In this study, NMR tests and triaxial compression tests were carried out on 160 artificial sand-clay mixtures with different mineralogical compositions, water contents, and dry densities in the laboratory to obtain the T spectra and shear strength indices, respectively.

View Article and Find Full Text PDF

Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.

View Article and Find Full Text PDF

Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture.

JACS Au

December 2024

Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.

The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!