Despite the fact that oil chemistry and oils spills have been studied for many years, there are still emerging techniques and unknown processes to be explored. The 2010 Deepwater Horizon oil spill in the Gulf of Mexico resulted in a revival of oil spill research across a wide range of fields. These studies provided many new insights, but unanswered questions remain. Over 1,000 journal articles related to the Deepwater Horizon spill are indexed by the Chemical Abstract Service. Numerous ecological, human health, and organismal studies were published. Analytical tools applied to the spill include mass spectrometry, chromatography, and optical spectroscopy. Owing to the large scale of studies, this review focuses on three emerging areas that have been explored but remain underutilized in oil spill characterization: excitation-emission matrix spectroscopy, black carbon analysis, and trace metal analysis using inductively coupled plasma mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-anchem-091522-110825DOI Listing

Publication Analysis

Top Keywords

oil spill
16
deepwater horizon
12
horizon oil
8
mass spectrometry
8
spill
6
oil
5
emerging chemical
4
chemical methods
4
methods petroleum
4
petroleum petroleum-derived
4

Similar Publications

Assessment of atmospheric volatile organic compounds at two crude oil production plants in Southeastern Türkiye.

Environ Monit Assess

December 2024

Graduate School of Natural and Applied Sciences, Gazi University, Ankara, 06500, Türkiye.

Ambient Volatile Organic Compounds (VOCs) were investigated to determine their characteristics, Ozone Formation Potentials (OFPs), and health risks in two crude oil production plants (Nusaybin and Egil plants) in southeastern Türkiye. Benzene, toluene, ethylbenzene, m + p xylene, o xylene, and 1,3,5-trimethylbenzene were measured at eight passive sampling points in each plant. Samples were analyzed using gas chromatography coupled with a flame ionization detector and a thermal desorption.

View Article and Find Full Text PDF

Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters.

View Article and Find Full Text PDF

Oil-water separation materials with specialized wettability have garnered significant attention in the field of oil-water separation due to the advantages of simple use and no secondary pollution. However, the adsorptive contamination of the filter surface by impurity phases and surfactants can cause a shift in the wettability of the filter surface. For efficient oil-water separation and improved resistance to adherent contamination on the oil-water separation membrane surface, herein, superwetted Cu nanofilms and smooth hydrophobic surfaces were prepared on SSM substrates by one-step electrodeposition and immersion methods, respectively.

View Article and Find Full Text PDF

Metallic 1T Phase MoS Nanosheets Covalently Functionalized with BBD Molecules for Enhanced Supercapacitor Performances.

ACS Appl Mater Interfaces

December 2024

Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong S.A.R. 999077, China.

Metallic 1T phase molybdenum disulfide (MoS) is among the most promising electrode materials for supercapacitors, but its capacitance and cyclability remain to be improved to meet the constantly increasing energy storage needs in portable electronics. In this study, we present a strategy, covalent functionalization, which achieves the improvement of capacitance of metallic 1T phase MoS. Covalently functionalized by the modifier 4-bromobenzenediazonium tetrafluoroborate, the metallic MoS membrane exhibits increased interlayer spacing, slightly curled layered architecture, enhanced charge transfer, and improved adsorption capabilities toward electrolyte molecules and ions.

View Article and Find Full Text PDF

New insights into autochthonous fungal bioaugmentation mechanisms for recalcitrant petroleum hydrocarbon components using stable isotope probing.

Sci Total Environ

December 2024

State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.

Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!