The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834032 | PMC |
http://dx.doi.org/10.1039/d2lc01076c | DOI Listing |
Biosens Bioelectron
December 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Zhengzhou Industrial Technology Research Institute of Shanghai Jiao Tong University, Zhengzhou, 450016, China. Electronic address:
Antimicrobial resistance (AMR) has become an increasingly severe threat to global health, and AMR-associated infection is one of the leading causes of death around the world. Due to the long turnaround time and the limited flexibility and availability of current antimicrobial susceptibility testing (AST) methods, a large portion of patients with bacterial infections are still treated empirically, increasing the risk of mistreatment. To address the demand for precision treatment of bacterial infections, we developed a nano-dilution SlipChip (nd-SlipChip)-based systematic evaluation method, which facilitates rapid, logic feedback for the assessment of antibiotics, antibiotic combinations, and phage therapy.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:
Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).
Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.
Biosensors (Basel)
December 2024
Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
Microfluidic devices have revolutionized biosensing by enabling precise manipulation of minute fluid volumes across diverse applications. This review investigates the incorporation of machine learning (ML) into the design, fabrication, and application of microfluidic biosensors, emphasizing how ML algorithms enhance performance by improving design accuracy, operational efficiency, and the management of complex diagnostic datasets. Integrating microfluidics with ML has fostered intelligent systems capable of automating experimental workflows, enabling real-time data analysis, and supporting informed decision-making.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!