AI Article Synopsis

  • The paper investigates the complex interactions between pulsed lasers and materials, focusing on how these interactions affect the quality of laser processing.
  • An innovative method using acoustic emission (AE) techniques is proposed to monitor these laser processes, specifically through experiments on nanosecond laser dotting on float glass.
  • By analyzing different AE signal characteristics, the study reveals insights into laser ablation and crack formation, demonstrating the method's effectiveness in understanding pulsed laser processing mechanisms.

Article Abstract

The mechanisms of interaction between pulsed laser and materials are complex and indistinct, severely influencing the stability and quality of laser processing. This paper proposes an intelligent method based on the acoustic emission (AE) technique to monitor laser processing and explore the interaction mechanisms. The validation experiment is designed to perform nanosecond laser dotting on float glass. Processing parameters are set differently to generate various outcomes: ablated pits and irregular-shaped cracks. In the signal processing stage, we divide the AE signals into two bands, main and tail bands, according to the laser processing duration, to study the laser ablation and crack behavior, respectively. Characteristic parameters extracted by a method that combines framework and frame energy calculation of AE signals can effectively reveal the mechanisms of pulsed laser processing. The main band features evaluate the degree of laser ablation from the time and intensity scales, and the tail band characteristics demonstrate that the cracks occur after laser dotting. In addition, from the analysis of the parameters of the tail band very large cracks can be efficiently distinguished. The intelligent AE monitoring method was successfully applied in exploring the interaction mechanism of nanosecond laser dotting float glass and can be used in other pulsed laser processing fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267076PMC
http://dx.doi.org/10.1007/s12200-023-00070-7DOI Listing

Publication Analysis

Top Keywords

laser processing
24
pulsed laser
16
laser
12
laser dotting
12
interaction mechanism
8
processing
8
acoustic emission
8
nanosecond laser
8
dotting float
8
float glass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!