Despite epidemiological evidence that suggests diabetes mellitus is a risk factor for cancer, the link between diabetes mellitus and primary bone cancer is rarely discussed. Chondrosarcomas are primary malignant cartilage tumors with poor prognosis and high metastatic potential. It remains unclear whether hyperglycemia affects the stemness and malignancy of chondrosarcoma cells. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), is a major immunological epitope detected in the tissue proteins of diabetic patients. We hypothesized that CML could enhance cancer stemness in chondrosarcoma cells. CML enhanced tumor-sphere formation and the expression of cancer stem cell markers in human chondrosarcoma cell lines. Migration and invasion ability and the epithelial-mesenchymal transition (EMT) process were also induced by CML treatment. Moreover, CML increased the protein expression levels of the receptor for AGE (RAGE), phosphorylated NFκB-p65, and decreased the phosphorylation of AKT and GSK-3. We also found that hyperglycemia with high CML levels facilitated tumor metastasis, whereas tumor growth was not affected in the streptozotocin (STZ)-induced diabetic NOD/SCID tumor xenograft mouse models. Our results indicate that CML enhances chondrosarcoma stemness and metastasis, which may reveal the relationship between AGE and bone cancer metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-023-03539-8DOI Listing

Publication Analysis

Top Keywords

advanced glycation
8
glycation product
8
malignancy chondrosarcoma
8
cancer stemness
8
diabetes mellitus
8
bone cancer
8
chondrosarcoma cells
8
cml
7
cancer
6
chondrosarcoma
5

Similar Publications

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Buenos Aires, Buenos Aires, Argentina.

Background: Alzheimer's disease is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and in the walls of brain vessels. The hippocampus - a complex brain structure that plays a key role in learning and memory - has been implicated in the disease. However, there is limited data on vascular changes during the pathological degeneration of Alzheimer's disease in this vulnerable structure, which has distinctive vascular features.

View Article and Find Full Text PDF

Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury.

View Article and Find Full Text PDF

Many proteins are essential food components but also major allergens. Reducing protein allergenicity while preserving its nutritional value and technofunctional properties has always been the goal of the food industry. Ultrasound (US) is a green processing method for modifying proteins.

View Article and Find Full Text PDF

Pickering Emulsions Stabilized by Pea Protein Isolate-Cellulose Conjugates Prepared via the Maillard Reaction and Their Application in Active Substance Protection.

Langmuir

December 2024

Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.

The development of innovative solid particles from renewable resources possessing high biocompatibility and exceptional emulsification capabilities is crucial for stabilizing Pickering emulsions and advancing carrier systems. In this study, a pea protein isolate (PPI)-cellulose conjugate particle was prepared by the Maillard reaction. Compared to the isoelectric point of pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!