Speleothems found in caves worldwide are considered the natural libraries of paleontology. Bacteria found in these ecosystems are generally limited to Proteobacteria and Actinomycetota, but rare microbiome and "Dark Matter" is generally under-investigated and often neglected. This research article discusses, for the first time to our knowledge, the diachronic diversity of Actinomycetota entrapped inside a cave stalactite. The planet's environmental microbial community profile of different eras can be stored in these refugia (speleothems). These speleothems could be an environmental "Microbial Ark" storing rare microbiome and "Dark Matter" bacterial communities evermore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266296PMC
http://dx.doi.org/10.33073/pjm-2023-016DOI Listing

Publication Analysis

Top Keywords

environmental "microbial
8
"microbial ark"
8
rare microbiome
8
microbiome "dark
8
"dark matter"
8
stalactites core
4
core prospect
4
prospect environmental
4
ark" actinomycetota
4
actinomycetota diversity
4

Similar Publications

Protocol for extraction of gut interstitial fluid in mice with two-front nutrient supply.

STAR Protoc

January 2025

Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311113, China. Electronic address:

The intestine features a two-front nutrient supply environment, comprising an enteral side enriched with microbial and dietary metabolites and a serosal side supplied by systemic nutrients, collectively supporting intestinal and systemic homeostasis, but there is currently no optimal approach for extracting and assessing the local intestinal microenvironment. Here, we present a protocol for constructing a nutrient supply model in mice and extracting gut interstitial fluid (GIF) via centrifugation. This model and the extracted GIF are suitable for downstream analyses.

View Article and Find Full Text PDF

Decoupled responses of soil microbial diversity and ecosystem functions to successive degeneration processes in alpine pioneer community.

Sci China Life Sci

January 2025

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!