Abdominal aortic aneurysms (AAAs) have been linked to the activation of osteoclastogenic macrophages. Reports have suggested that Wnt signaling has a dual effect of proliferation and differentiation during osteoclastogenesis. The Wnt/β-Catenin pathway is a critical regulator of cell pluripotency, cell survival, and cell fate decisions. It regulates cell proliferation and differentiation through transcriptional co-activators, CBP, and p300, respectively. The inhibition of β-catenin suppresses proliferation but induces differentiation of osteoclast precursor cells. This study aimed to examine the effect of ICG-001, a β-catenin/CBP-specific Wnt signaling inhibitor, on osteoclastogenesis by inhibiting proliferation without inducing differentiation. To induce osteoclastogenesis, RAW 264.7 macrophages were stimulated with a soluble receptor activator of NF-κB ligand (RANKL). The effect of Wnt signaling inhibition was examined by treating macrophages with or without ICG-001 during RANKL stimulation. The activation and differentiation of macrophages were examined through western blotting, quantitative PCR, and tartrate-resistant acid phosphate (TRAP) staining in vitro. The relative expression level of the nuclear factor of activated T-cells cytoplasmic 1 protein was significantly suppressed by ICG-001 treatment. The relative expression levels of mRNA of TRAP, cathepsin K, and matrix metalloproteinase-9 were significantly lower in the ICG-001-treated group. The number of TRAP-positive cells decreased in the ICG-001-treated group relative to the non-treated group. The inhibition of Wnt signaling pathway via ICG-001 suppressed osteoclastogenic macrophage activation. Our previous studies have shown the importance of osteoclastogenic macrophage activation in AAA. Further research to examine the therapeutic potential of ICG-001 on AAA is warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390850 | PMC |
http://dx.doi.org/10.1530/VB-23-0007 | DOI Listing |
Sci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFBackground: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.
View Article and Find Full Text PDFSci Rep
December 2024
Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830028, China.
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer's disease. Despite numerous studies, specific age-related factors remain unidentified. This study employed a multi-omics approach to investigate the link between PD and aging.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
Solute transport family 7A member 7 (SLC7A7) mutations contribute to lysinuric protein intolerance (LPI), which is the mechanism of action that has been extensively studied. In colorectal cancer (CRC), SLC7A7 appears to play a role, but the features and mechanisms are not yet well understood. Survival was analyzed using the Kaplan-Meier analysis.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!