Highly soluble bisurea derivatives for anion recognition.

Org Biomol Chem

Department of Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan.

Published: June 2023

Highly soluble bisurea derivatives having 1,2-phenoxyethane (receptors 2) and 1,2-ethoxyethane (3) moieties as spacer groups were designed and prepared based on previously reported receptors with the 2,2'-binaphthyl group as a spacer (1). The receptors can be prepared in fewer steps from commercially available starting materials. The solubilities and anion recognition abilities were evaluated by UV-vis and NMR spectral methods. Receptors 2 and 3 bearing a flexible linker showed good solubilities in common organic solvents such as CHCl, MeCN, 2-butanone, toluene, and THF. Although the anion recognition abilities of receptors 2 and 3 were lower than those of receptors 1, the greatly improved solubilities of receptors 2 and 3 allow the association of anions under more concentrated conditions for the solubilisation of salts such as lithium chloride in organic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ob00802aDOI Listing

Publication Analysis

Top Keywords

anion recognition
12
highly soluble
8
soluble bisurea
8
bisurea derivatives
8
recognition abilities
8
organic solvents
8
receptors
7
derivatives anion
4
recognition highly
4
derivatives 12-phenoxyethane
4

Similar Publications

Leveraging Metal Complexes for Microsecond Lifetime-Based Chloride Sensing.

ACS Sens

January 2025

Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13676, United States.

Chloride is the most abundant anion in cells and plays many critical roles in maintaining cellular homeostasis. However, current chloride indicators are rare with inherent sensitivity in their emission properties, such as vulnerability to pH changes or short emission lifetimes. These limitations restrict their application in aqueous media and imaging.

View Article and Find Full Text PDF

Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.

View Article and Find Full Text PDF

Cooperative Anion-π Catalysis with Chiral Molecular Cages toward Enantioselective Desymmetrization of Anhydrides.

J Am Chem Soc

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Exploiting novel noncovalent interactions for catalysis design represents a fascinating direction. For the flexible and relatively weak anion-π interactions, manipulation of two or more π-acidic surfaces for cooperative activation is highly desirable. Here, we demonstrate the strategy of cooperative anion-π catalysis based on chiral molecular cages with V-shaped electron-deficient cavities for synergic binding and activation of dicarbonyl electrophiles toward highly enantioselective desymmetrization transformation.

View Article and Find Full Text PDF

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Background: The rapid and sensitive detection of nitrite is important to human health protection due to its carcinogenic and teratogenic risks with excessive intake. The Griess assay is widely applied for the design of nitrite detection system. However, its relatively slow reaction kinetics and sole colorimetry mode might limit it's the sensitivity and practical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!