Changes of cortical gray matter volume during development: a Human Connectome Project study.

J Neurophysiol

Department of Veterans Affairs Health Care System, The Neuroimaging Research Group, Brain Sciences Center, Minneapolis, Minnesota, United States.

Published: July 2023

AI Article Synopsis

  • A study analyzed gray matter volume in 35 brain regions using MRI data from 649 participants aged 6-21 years as part of the Human Connectome Project-Development.
  • The results showed a significant overall decrease in cortical volume with age, but some regions, like the hippocampal cortex and pericalcarine cortex, remained stable while the temporal pole increased in volume.
  • Additionally, the research found that volume reduction was generally similar for both sexes, with a notable exception in the parietal lobe where males experienced greater volume loss compared to females.

Article Abstract

We assessed changes in gray matter volume of 35 cerebrocortical regions in a large sample of participants in the Human Connectome Project-Development ( = 649, 6-21 yr old, 299 males and 350 females). The same protocol for MRI data acquisition and processing was used for all brains. Volumes of individual areas were adjusted for estimated total intracranial volume and linearly regressed against age. We found changes of volume with age that were distinct among areas and consistent between sexes, as follows: ) the overall cortical volume decreased significantly with age; ) the volumes of 30/35 areas also decreased significantly with age; ) the volumes of the hippocampal cortex (hippocampus, parahippocampal, and entorhinal) and that of pericalcarine cortex did not show significant age-related changes; and ) the volume of the temporal pole increased significantly with age. The rates of volume reduction with age did not differ significantly between the two sexes, except for areas of the parietal lobe where males showed statistically significantly higher volume reduction with age than females. These results, obtained from a large sample of male and female participants, and acquired and processed in the same way, confirm previous findings, offer new insights into region-specific age-related changes in cortical brain volume, and are discussed in the context of the hypothesis that reduction in cortical volume may be partly due to a background, low-grade chronic neuroinflammation inflicted by common viruses residing latently in the brain, notably viruses of the human herpes family. We report mixed effects of age on cortical gray matter volume during development in a large sample of 649 participants studied in an identical manner (6-21 yr old, 299 males, 350 females). Volumes of 30/35 cortical areas decreased with age, temporal pole increased, and pericalcarine and hippocampal cortex (hippocampus, parahippocampal, and entorhinal) did not change. These findings were very similar in both sexes and provide a solid base for assessing region-specific cortical changes during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312313PMC
http://dx.doi.org/10.1152/jn.00164.2023DOI Listing

Publication Analysis

Top Keywords

gray matter
12
matter volume
12
large sample
12
decreased age
12
volume
11
age
9
changes cortical
8
cortical gray
8
volume development
8
human connectome
8

Similar Publications

Objective: Study of neuroimaging changes according to MRI morphometry and their comparison with the structure and severity of cognitive impairment (CI) in patients with Alzheimer's disease (AD) and primary open-angle glaucoma (POAG).

Material And Methods: The study involved 90 patients who were divided into two equal groups of 45 people and who early had diagnosis of AD (group 1; median age - 71 [66; 77] years) and POAG (group 2; median age - 68 [64; 77] years). 71] years).

View Article and Find Full Text PDF

Objective: The purpose of this study was to determine whether gray matter volume and diffusion-based metrics in associated white matter changed in breachers who had neuroimaging performed at two timepoints. A secondary purpose was to compare these changes in a group who had a one-year interval between their imaging timepoints to a group that had a two-year interval between imaging.

Methods: Between timepoints, clusters with significantly different gray matter volume were used as seeds for reconstruction of associated structural networks using diffusion metrics.

View Article and Find Full Text PDF

Introduction: This study investigated the cortical and subcortical gray matter volume (GMV) and cognitive impairment (CI) in patients with Parkinson's disease (PD).

Methods: In this study, T1-weighted magnetic resonance imaging of the cortex and subcortex was conducted on 92 individuals diagnosed with PD and 92 healthy controls (HCs). PD patients were divided into three groups: PD with normal cognition (PD-NC,  = 21), PD with mild CI (PD-MCI,  = 43), and PD with severe CI (PD-SCI,  = 28).

View Article and Find Full Text PDF

Research Review: Shared and distinct structural and functional brain alterations in adolescents with major depressive disorder' - a multimodal meta-analysis.

J Child Psychol Psychiatry

December 2024

Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.

Background: Neuroimaging studies have identified brain structural and functional alterations in adolescents with major depressive disorder (MDD); however, the results are inconsistent, and whether patients exhibit spatially convergent structural and functional brain abnormalities remains unclear.

Methods: We conducted voxel-wise meta-analysis of voxel-based morphometry (VBM) and resting-state functional studies, respectively, to identify regional gray matter volume (GMV) and brain activity alterations in adolescent MDD patients. Multimodal analysis was performed to examine the overlap of regional GMV and brain activity alterations.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!