High-altitude cardiac injury (HACI) is one of the common tissue injuries caused by high-altitude hypoxia that may be life threatening. Notoginsenoside R1 (NG-R1), a major saponin of Panax notoginseng, exerts anti-oxidative, anti-inflammatory, and anti-apoptosis effects, protecting the myocardium from hypoxic injury. This study aimed to investigate the protective effect and molecular mechanism of NG-R1 against HACI. We simulated a 6000 m environment for 48 h in a hypobaric chamber to create a HACI rat model. Rats were pretreated with NG-R1 (50, 100 mg/kg) or dexamethasone (4 mg/kg) for 3 days and then placed in the chamber for 48 h. The effect of NG-R1 was evaluated by changes in Electrocardiogram parameters, histopathology, cardiac biomarkers, oxidative stress and inflammatory indicators, key protein expression, and immunofluorescence. U0126 was used to verify whether the anti-apoptotic effect of NG-R1 was related to the activation of ERK pathway. Pretreatment with NG-R1 can improve abnormal cardiac electrical conduction and alleviate high-altitude-induced tachycardia. Similar to dexamethasone, NG-R1 can improve pathological damage, reduce the levels of cardiac injury biomarkers, oxidative stress, and inflammatory indicators, and down-regulate the expression of hypoxia-related proteins HIF-1α and VEGF. In addition, NG-R1 reduced cardiomyocyte apoptosis by down-regulating the expression of apoptotic proteins Bax, cleaved caspase 3, cleaved caspase 9, and cleaved PARP1 and up-regulating the expression of anti-apoptotic protein Bcl-2 through activating the ERK1/2-P90RSK-Bad pathway. In conclusion, NG-R1 prevented HACI and suppressed apoptosis via activation of the ERK1/2-P90RSK-Bad pathway, indicating that NG-R1 has therapeutic potential to treat HACI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.7923 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!