Sheath blight () causes significant yield losses in rice ( L.). Its sustainable management needs an efficient biocontrol agent. The objective was to screen bacterial isolates as an antagonist to and identify the most efficient ones as sheath blight suppressors under greenhouse conditions. Two assays (E1 and E2) were performed in a completely randomized design with three replications. E1 tested 21 bacterial isolates antagonists to . E2 was conducted under greenhouse conditions, with rice cultivar BRS Pampeira sown in plastic pots (7 kg) containing fertilized soil. Sixty old plants were inoculated with a segment of a toothpick containing fragments of , followed by spray inoculation of a bacterial suspension (10 CFU/mL). The severity of the disease was determined by calculating the relative lesion size formed on the colm. Isolates BRM32112 (), BRM65929 (), and BRM65919 () reduced colony radial growth by 92.8, 77.56, and 75.56%, respectively while BRM63523 (), BRM65923 and BRM65916 () and BRM65919 () with 23.45, 23.37, 23.62, and 20.17 cm, respectively were effective at suppressing sheath blight in greenhouse, indicating their potential as a biofungicide for sheath blight suppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601234.2023.2220644 | DOI Listing |
Front Plant Sci
December 2024
Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt.
Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.
Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .
View Article and Find Full Text PDFSci Rep
December 2024
Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Egypt.
The rice plant is one of the most significant crops in the world, and it suffers from various diseases. The traditional methods for rice disease detection are complex and time-consuming, mainly depending on the expert's experience. The explosive growth in image processing, computer vision, and deep learning techniques provides effective and innovative agriculture solutions for automatically detecting and classifying these diseases.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Pearl millet (Pennisetum glaucum R. Br.) is a vital crop, especially in arid and semi-arid regions, where it serves as a staple food for millions.
View Article and Find Full Text PDFPlant Biotechnol J
December 2024
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!