https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37313410&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 373134102023061520230615
1664-3224142023Frontiers in immunologyFront ImmunolDifferential recognition of influenza A virus H1N1 neuraminidase by DNA vaccine-induced antibodies in pigs and ferrets.12007181200718120071810.3389/fimmu.2023.1200718Neuraminidase (NA) accounts for approximately 10-20% of the total glycoproteins on the surface of influenza viruses. It cleaves sialic acids on glycoproteins, which facilitates virus entry into the airways by cleaving heavily glycosylated mucins in mucus and the release of progeny virus from the surface of infected cells. These functions make NA an attractive vaccine target. To inform rational vaccine design, we define the functionality of influenza DNA vaccine-induced NA-specific antibodies relative to antigenic sites in pigs and ferrets challenged with a vaccine-homologous A/California/7/2009(H1N1)pdm09 strain. Sera collected pre-vaccination, post-vaccination and post-challenge were analyzed for antibody-mediated inhibition of NA activity using a recombinant H7N1CA09 virus. Antigenic sites were further identified with linear and conformational peptide microarrays spanning the full NA of A/California/04/2009(H1N1)pdm09. Vaccine-induced NA-specific antibodies inhibited the enzymatic function of NA in both animal models. The antibodies target critical sites of NA such as the enzymatic site, second sialic binding site and framework residues, shown here by high-resolution epitope mapping. New possible antigenic sites were identified that potentially block the catalytic activity of NA, including an epitope recognized solely in pigs and ferrets with neuraminidase inhibition, which could be a key antigenic site affecting NA function. These findings show that our influenza DNA vaccine candidate induces NA-specific antibodies that target known critical sites, and new potential antigenic sites of NA, inhibiting the catalytic activity of NA.Copyright © 2023 Tingstedt, Stephen, Risinger, Blixt, Gunalan, Johansen, Fomsgaard, Polacek and Lassaunière.TingstedtJeanette LinneaJLVirus Research & Development Laboratory, Department of Virus & Microbiological Special Diagnostics Statens Serum Institut, Copenhagen, Denmark.Research Unit of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.StephenChristineCDepartment of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States.RisingerChristianCDepartment of Chemistry, University of Copenhagen, Copenhagen, Denmark.Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.BlixtOlaODepartment of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.GunalanVithiagaranVVirus Research & Development Laboratory, Department of Virus & Microbiological Special Diagnostics Statens Serum Institut, Copenhagen, Denmark.JohansenIsik SomuncuISResearch Unit of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.FomsgaardAndersAVirus Research & Development Laboratory, Department of Virus & Microbiological Special Diagnostics Statens Serum Institut, Copenhagen, Denmark.Research Unit of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.PolacekCharlottaCVirus Research & Development Laboratory, Department of Virus & Microbiological Special Diagnostics Statens Serum Institut, Copenhagen, Denmark.LassaunièreRiaRVirus Research & Development Laboratory, Department of Virus & Microbiological Special Diagnostics Statens Serum Institut, Copenhagen, Denmark.engJournal ArticleResearch Support, Non-U.S. Gov't20230529
SwitzerlandFront Immunol1015609601664-32240Vaccines, DNAEC 3.2.1.18Neuraminidase0Antibodies, Viral0Influenza VaccinesIMAnimalsSwineHumansVaccines, DNAFerretsInfluenza A Virus, H1N1 SubtypeNeuraminidasegeneticsInfluenza A Virus, H7N1 SubtypeInfluenza, HumanAntibodies, ViralInfluenza VaccinesDNA vaccineELLAantibodiesepitope mappinginfluenzaneuraminidaseneuraminidase inhibitionvaccinesAF is co-inventor on a patent application covering an influenza DNA vaccine; all rights to the vaccine have been assigned to Statens Serum Institut SSI, a Danish national not-for-profit governmental public health institute. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
2023452023512202361564220236146422023614357202311epublish37313410PMC1025832010.3389/fimmu.2023.1200718 WHO . Available at: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (Accessed April 5, 2023).Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev (2013) 26(3):476–92. doi: 10.1128/CMR.00097-1210.1128/CMR.00097-12PMC371949923824369Barr IG, McCauley J, Cox N, Daniels R, Engelhardt OG, Fukuda K, et al. . Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and b influenza viruses: basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009-2010 northern hemisphere season. Vaccine (2010) 28(5):1156–67. doi: 10.1016/j.vaccine.2009.11.04310.1016/j.vaccine.2009.11.04320004635Gerdil C. The annual production cycle for influenza vaccine. Vaccine (2003) 21(16):1776–9. doi: 10.1016/S0264-410X(03)00071-910.1016/S0264-410X(03)00071-912686093Dos Santos G, Neumeier E, Bekkat-Berkani R. Influenza: can we cope better with the unpredictable? Hum Vaccines Immunother (2016) 12(3):699–708. doi: 10.1080/21645515.2015.108604710.1080/21645515.2015.1086047PMC496464126360135Crowe JE. Is it possible to develop a “universal” influenza virus vaccine?: potential for a universal influenza vaccine. Cold Spring Harb Perspect Biol (2018) 10(7):1–8. doi: 10.1101/cshperspect.a02949610.1101/cshperspect.a029496PMC582904528663208Krammer F. The human antibody response to influenza a virus infection and vaccination. Nat Rev Immunol (2019) 19(6):383–97. doi: 10.1038/s41577-019-0143-610.1038/s41577-019-0143-630837674Du R, Cui Q, Rong L. Flu universal vaccines: new tricks on an old virus. Virol Sin (2021) 36(1):13–24. doi: 10.1007/s12250-020-00283-610.1007/s12250-020-00283-6PMC745997332870450McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza virus neuraminidase structure and functions. Front Microbiol (2019) 10(JAN). doi: 10.3389/fmicb.2019.0003910.3389/fmicb.2019.00039PMC636241530761095McAuley JL, Corcilius L, Tan HX, Payne RJ, McGuckin MA, Brown LE. The cell surface mucin MUC1 limits the severity of influenza a virus infection. Mucosal Immunol (2017) 10(6):1581–93. doi: 10.1038/mi.2017.1610.1038/mi.2017.1628327617Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O’Neal W, et al. . Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J (2009) 23(6):1858–68. doi: 10.1096/fj.08-11913110.1096/fj.08-119131PMC269865519190083Wohlbold TJ, Krammer F. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses (2014) 6(6):2465–94. doi: 10.3390/v606246510.3390/v6062465PMC407493824960271Rimmelzwaan GF, McElhaney JE. Correlates of protection: novel generations of influenza vaccines. Vaccine (2008) 26(SUPPL. 4):5–8. doi: 10.1016/j.vaccine.2008.07.04310.1016/j.vaccine.2008.07.04319230158Brett IC, Johansson BE. Immunization against influenza a virus: comparison of conventional inactivated, live-attenuated and recombinant baculovirus produced purified hemagglutinin and neuraminidase vaccines in a murine model system. Virology (2005) 339(2):273–80. doi: 10.1016/j.virol.2005.06.00610.1016/j.virol.2005.06.00615996702Kilbourne ED, Couch RB, Kasel JA, Keitel WA, Cate TR, Quarles JH, et al. . Purified influenza a virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. Vaccine (1995) 13(18):1799–803. doi: 10.1016/0264-410X(95)00127-M10.1016/0264-410X(95)00127-M8701596Johansson BE, Brett IC. Recombinant influenza b virus HA and NA antigens administered in equivalent amounts are immunogenically equivalent and induce equivalent homotypic and broader heterovariant protection in mice than conventional and live influenza vaccines. Hum Vaccin. (2008) 4(6):420–4. doi: 10.4161/hv.4.6.620110.4161/hv.4.6.620118535408Couch RB, Kasel JA, Gerin JL, Schulman JL, Kilbourne ED. Induction of partial immunity to influenza by a neuraminidase specific vaccine. J Infect Dis (1974) 129(4):411–20. doi: 10.1093/infdis/129.4.41110.1093/infdis/129.4.4114593871Shaw ML. The next wave of influenza drugs. ACS Infect Dis (2017) 3(10):691–4. doi: 10.1021/acsinfecdis.7b0014210.1021/acsinfecdis.7b0014228892353Krammer F, Fouchier RAM, Eichelberger MC, Webby RJ, Shaw-Saliba K, Wan H, et al. . NAction! how can neuraminidase-based immunity contribute to better influenza virus vaccines? MBio (2018) 9(2):1–12. doi: 10.1128/mBio.02332-1710.1128/mBio.02332-17PMC588502729615508Borggren M, Nielsen J, Bragstad K, Karlsson I, Krog JS, Williams JA, et al. . Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza a DNA vaccine for pigs and humans. Hum Vaccines Immunother. (2015) 11(8):1983–90. doi: 10.1080/21645515.2015.101198710.1080/21645515.2015.1011987PMC463570225746201Borggren M, Nielsen J, Karlsson I, Dalgaard TS, Trebbien R, Williams JA, et al. . A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs. Vaccine (2016) 34(32):3634–40. doi: 10.1016/j.vaccine.2016.05.03010.1016/j.vaccine.2016.05.030PMC494020727211039Karlsson I, Borggren M, Rosenstierne MW, Trebbien R, Williams JA, Vidal E, et al. . Protective effect of a polyvalent influenza DNA vaccine in pigs. Vet Immunol Immunopathol (2018) 195(August 2017):25–32. doi: 10.1016/j.vetimm.2017.11.00710.1016/j.vetimm.2017.11.007PMC576412129249314Guilfoyle K, Major D, Skeldon S, James H, Tingstedt JL, Polacek C, et al. . Protective efficacy of a polyvalent influenza a DNA vaccine against both homologous (H1N1pdm09) and heterologous (H5N1) challenge in the ferret model. Vaccine (2020) 39, 4903–4913. doi: 10.1016/j.vaccine.2020.09.06210.1016/j.vaccine.2020.09.06233036805Williams J. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines (2013) 1(3):225–49. doi: 10.3390/vaccines103022510.3390/vaccines1030225PMC449422526344110Carnes AE, Williams JA, Aldevron LLC. 007943377B2 Process for plasmid DNA fermentation. Provider: US Patent 7,943,377 (2011).Lassaunière R, Polacek C, Gram GJ, Frische A, Tingstedt JL, Krüger M, et al. . Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines (2021) 6(1). doi: 10.1038/s41541-021-00419-z10.1038/s41541-021-00419-zPMC868841834930909Ferrari L, Borghetti P, Gozio S, De Angelis E, Ballotta L, Smeets J, et al. . Evaluation of the immune response induced by intradermal vaccination by using a needle-less system in comparison with the intramuscular route in conventional pigs. Res Vet Sci (2011) 90(1):64–71. doi: 10.1016/j.rvsc.2010.04.02610.1016/j.rvsc.2010.04.02620546827Couzens L, Gao J, Westgeest K, Sandbulte M, Lugovtsev V, Fouchier R, et al. . An optimized enzyme-linked lectin assay to measure influenza a virus neuraminidase inhibition antibody titers in human sera. J Virol Methods (2014) 210:7–14. doi: 10.1016/j.jviromet.2014.09.00310.1016/j.jviromet.2014.09.00325233882Frey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods (1998) 221(1–2):35–41. doi: 10.1016/S0022-1759(98)00170-710.1016/S0022-1759(98)00170-79894896Wohlbold TJ, Chromikova V, Tan GS, Meade P, Amanat F, Comella P, et al. . Hemagglutinin stalk- and neuraminidase-specific monoclonal antibodies protect against lethal H10N8 influenza virus infection in mice. J Virol (2016) 90(2):851–61. doi: 10.1128/JVI.02275-1510.1128/JVI.02275-15PMC470266726512088Kosik I, Yewdell JW. Influenza a virus hemagglutinin specific antibodies interfere with virion neuraminidase activity via two distinct mechanisms. Virology (2017) 500(October 2016):178–83. doi: 10.1016/j.virol.2016.10.02410.1016/j.virol.2016.10.024PMC512773527825034Chen Y-Q, Lan LY-L, Huang M, Henry C, Wilson PC. Hemagglutinin stalk-reactive antibodies interfere with influenza virus neuraminidase activity by steric hindrance. J Virol (2019) 93(4). doi: 10.1128/JVI.01526-1810.1128/JVI.01526-18PMC636401330518651Rockman S, Brown LE, Barr IG, Gilbertson B, Lowther S, Kachurin A, et al. . Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J Virol (2013) 87(6):3053–61. doi: 10.1128/JVI.02434-1210.1128/JVI.02434-12PMC359217223283953Fritz R, Sabarth N, Kiermayr S, Hohenadl C, Howard MK, Ilk R, et al. . A vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. J Infect Dis (2012) 205(1):28–34. doi: 10.1093/infdis/jir71110.1093/infdis/jir71122090447Monto AS, Petrie JG, Cross RT, Johnson E, Liu M, Zhong W, et al. . Antibody to influenza virus neuraminidase: an independent correlate of protection. J Infect Dis (2015) 212(8):1191–9. doi: 10.1093/infdis/jiv19510.1093/infdis/jiv19525858957Nguyen HT, Sheu TG, Mishin VP, Klimov AI, Gubareva LV. Assessment of pandemic and seasonal influenza a (H1N1) virus susceptibility to neuraminidase inhibitors in three enzyme activity inhibition assays. Antimicrob Agents Chemother (2010) 54(9):3671–7. doi: 10.1128/AAC.00581-1010.1128/AAC.00581-10PMC293494920585136Wan H, Gao J, Xu K, Chen H, Couzens LK, Rivers KH, et al. . Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol (2013) 87(16):9290–300. doi: 10.1128/JVI.01203-1310.1128/JVI.01203-13PMC375405023785204Wan H, Yang H, Shore DA, Garten RJ, Couzens L, Gao J, et al. . Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat Commun (2015) 6:6–15. doi: 10.1038/ncomms711410.1038/ncomms7114PMC434721525668439Chen YQ, Wohlbold TJ, Zheng NY, Huang M, Huang Y, Neu KE, et al. . Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell (2018) 173(2):417–29. doi: 10.1016/j.cell.2018.03.03010.1016/j.cell.2018.03.030PMC589093629625056Doyle TM, Jaentschke B, Van Domselaar G, Hashem AM, Farnsworth A, Forbes NE, et al. . The universal epitope of influenza a viral neuraminidase fundamentally contributes to enzyme activity and viral replication. J Biol Chem (2013) 288(25):18283–9. doi: 10.1074/jbc.M113.46888410.1074/jbc.M113.468884PMC368997023645684Doyle TM, Li C, Bucher DJ, Hashem AM, Van Domselaar G, Wang J, et al. . A monoclonal antibody targeting a highly conserved epitope in influenza b neuraminidase provides protection against drug resistant strains. Biochem Biophys Res Commun (2013) 441(1):226–9. doi: 10.1016/j.bbrc.2013.10.04110.1016/j.bbrc.2013.10.04124140051Doyle TM, Hashem AM, Li C, Van Domselaar G, Larocque L, Wang J, et al. . Universal anti-neuraminidase antibody inhibiting all influenza a subtypes. Antiviral Res (2013) 100(2):567–74. doi: 10.1016/j.antiviral.2013.09.01810.1016/j.antiviral.2013.09.01824091204Ambati A, Valentini D, Montomoli E, Lapini G, Biuso F, Wenschuh H, et al. . H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus pandemrix® vaccination. Immunology (2015) 145(3):357–66. doi: 10.1111/imm.1244810.1111/imm.12448PMC447953525639813