Powder metallurgy methods, particularly ball milling, are up-and-coming in tuning metal matrix composite (MMC) properties. This study uses ball milling at various milling times to create an aluminum matrix composite (AMC) reinforced with magnetite nanoparticles. The milling time was optimized to create an AMC with favorable mechanical and magnetic properties, and its effect on magnetism, microstructure, and hardness was studied. The AMC displayed the highest magnetic saturation of 11.04 emu/g after 8 h of milling. After compaction and sintering, characterization of the final composite material using Energy Disperse Spectroscopy and X-ray diffraction (XRD) showed the presence of AlO and FeAl phases leading to enhanced mechanical properties in terms of Vickers hardness that reached a value of 81 Hv corresponding to an increase of 270% compared to unreinforced aluminum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258447PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e16887DOI Listing

Publication Analysis

Top Keywords

matrix composite
12
milling time
8
aluminum matrix
8
ball milling
8
milling
6
time preparation
4
preparation aluminum
4
composite
4
composite reinforced
4
reinforced magnetic
4

Similar Publications

The advancement of organic room temperature phosphorescence (RTP) materials has attracted considerable interest owing to their extensive applications. Their distinct advantages, including a metal-free composition, low toxicity, and facile synthesis under ambient conditions, make them highly desirable. This study examines the delayed fluorescence (DF) and RTP of metal-free, amorphous indenophenanthridine (IND)-based derivatives (1-10) and provides insights into molecular functionalisation and host matrix effects on delayed emission (RTP and DF).

View Article and Find Full Text PDF

Functionally Graded Oxide Scale on (Hf,Zr,Ti)B Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving.

Adv Sci (Weinh)

January 2025

Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.

View Article and Find Full Text PDF

Cryogenic, but not hypothermic, preservation disrupts the extracellular matrix of cell sheets.

Bioact Mater

April 2025

3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal.

Cell sheet (CS)-based approaches hold significant potential for tissue regeneration, relying on the extracellular matrix (ECM) for success. Like in native tissues, the ECM provides structural and biochemical support for cellular homeostasis and function. Effective preservation strategies that maintain ECM integrity are critical to enhance the therapeutic potential of CS-based approaches.

View Article and Find Full Text PDF

Through millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions.

View Article and Find Full Text PDF

A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!