AI Article Synopsis

  • The study focuses on the investigation and mapping of resistance to Asian soybean rust (ASR) in the soybean line PI 594756, comparing it to the susceptible line PI 594891.
  • Using Bulked Segregant Analysis (BSA) and a panel of isolates, researchers identified resistance traits, classifying PI 594756 as having monogenic dominant resistance, although it showed incomplete dominance when quantified.
  • Genetic mapping placed the resistance gene on chromosome 18, pinpointing it between specific base pair positions, and a haplotype analysis revealed unique SNPs that can aid in marker-assisted selection (MAS) for future breeding.

Article Abstract

Unlabelled: Asian soybean rust (ASR), caused by the fungus , is the main disease affecting soybean in Brazil. This study aimed at investigating and mapping the resistance of the PI 594756 to , by using Bulked Segregant Analysis (BSA). The PI 594756 and the susceptible PI 594891 were crossed and the resulting and populations (208 and 1770 plants, respectively) were tested against ASR. Also, these PIs and differential varieties were tested against a panel of monosporic isolates. Plants presenting tan lesions were classified as susceptible () while plants presenting reddish-brown (RB) lesions were classified as resistant. DNA bulks were genotyped with Infinium BeadChips and the genomic region identified was further analyzed in the individuals with target GBS (tGBS). PI 594,56 presented a unique resistance profile compared to the differential varieties. The resistance was monogenic dominant; however, it was classified as incompletely dominant when quantitatively studied. Genetic and QTL mapping placed the PI 594756 gene between the genomic region located at 55,863,741 and 56,123,516 bp of chromosome 18. This position is slightly upstream mapping positions of (PI 200492) and (PI 594538A). Finally, we performed a haplotype analysis in a whole genomic sequencing-SNP database composed of Brazilian historical germplasm and sources of genes. We found SNPs that successfully differentiated the new PI 594756 allele from and sources. The haplotype identified can be used as a tool for marker-assisted selection (MAS).

Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01358-4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248603PMC
http://dx.doi.org/10.1007/s11032-023-01358-4DOI Listing

Publication Analysis

Top Keywords

soybean rust
8
resistance 594756
8
differential varieties
8
plants presenting
8
lesions classified
8
genomic region
8
0
5
mapping
4
mapping soybean
4
resistance
4

Similar Publications

Discrimination of leaf diseases in Maize/Soybean intercropping system based on hyperspectral imaging.

Front Plant Sci

December 2024

College of Agronomy, College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong, China.

In order to achieve precise discrimination of leaf diseases in the Maize/Soybean intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study utilized hyperspectral imaging and deep learning algorithms for the classification of diseased leaves of maize and soybean.

View Article and Find Full Text PDF

Resistance in Soybean Against Infection by Is Induced by a Phosphite of Nickel and Potassium.

Plants (Basel)

November 2024

Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.

Article Synopsis
  • Soybean crops are significantly affected by rust epidemics caused by a specific pathogen, leading to yield losses and increased fungicide usage.
  • A study tested a phosphite solution of nickel and potassium as an induced resistance (IR) treatment, finding that it dramatically reduced the germination of rust spores and disease severity in infected soybean plants.
  • The IR treatment not only enhanced nutrient levels like potassium and nickel but also preserved the plants' photosynthetic health and boosted the expression of defense-related genes, suggesting a robust biochemical response to fungal infections.
View Article and Find Full Text PDF

Variability and functional characterization of the Phakopsora pachyrhizi Egh16-like effectors.

Genet Mol Biol

September 2024

Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil.

Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members.

View Article and Find Full Text PDF

Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR.

View Article and Find Full Text PDF

Evaluation of Resistance Induction Promoted by Bioactive Compounds of LV Strain against Asian Soybean Rust.

Microorganisms

August 2024

Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil.

are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. causes Asian soybean rust, representing a high loss of yield around the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!