A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms. | LitMetric

AI Article Synopsis

  • The study investigates the severity of COVID-19 in patients with chronic comorbidities, aiming to leverage machine learning (ML) algorithms for predicting mortality risk and hospital length of stay (LoS).
  • Researchers reviewed medical records of 1,291 patients from March 2020 to January 2021, identifying key symptoms like shortness of breath and chronic conditions such as diabetes and hypertension.
  • The gradient boosting model demonstrated the highest accuracy for mortality risk prediction (84.15%), while the multilayer perceptron (MLP) was most effective for predicting LoS, showcasing the potential of ML in managing healthcare resources amid the pandemic.

Article Abstract

Background: The severity of coronavirus (COVID-19) in patients with chronic comorbidities is much higher than in other patients, which can lead to their death. Machine learning (ML) algorithms as a potential solution for rapid and early clinical evaluation of the severity of the disease can help in allocating and prioritizing resources to reduce mortality.

Objective: The objective of this study was to predict the mortality risk and length of stay (LoS) of patients with COVID-19 and history of chronic comorbidities using ML algorithms.

Methods: This retrospective study was conducted by reviewing the medical records of COVID-19 patients with a history of chronic comorbidities from March 2020 to January 2021 in Afzalipour Hospital in Kerman, Iran. The outcome of patients, hospitalization was recorded as discharge or death. The filtering technique used to score the features and well-known ML algorithms were applied to predict the risk of mortality and LoS of patients. Ensemble Learning methods is also used. To evaluate the performance of the models, different measures including F1, precision, recall, and accuracy were calculated. The TRIPOD guideline assessed transparent reporting.

Results: This study was performed on 1291 patients, including 900 alive and 391 dead patients. Shortness of breath (53.6%), fever (30.1%), and cough (25.3%) were the three most common symptoms in patients. Diabetes mellitus(DM) (31.3%), hypertension (HTN) (27.3%), and ischemic heart disease (IHD) (14.2%) were the three most common chronic comorbidities of patients. Twenty-six important factors were extracted from each patient's record. Gradient boosting model with 84.15% accuracy was the best model for predicting mortality risk and multilayer perceptron (MLP) with rectified linear unit function (MSE = 38.96) was the best model for predicting the LoS. The most common chronic comorbidities among these patients were DM (31.3%), HTN (27.3%), and IHD (14.2%). The most important factors in predicting the risk of mortality were hyperlipidemia, diabetes, asthma, and cancer, and in predicting LoS was shortness of breath.

Conclusion: The results of this study showed that the use of ML algorithms can be a good tool to predict the risk of mortality and LoS of patients with COVID-19 and chronic comorbidities based on physiological conditions, symptoms, and demographic information of patients. The Gradient boosting and MLP algorithms can quickly identify patients at risk of death or long-term hospitalization and notify physicians to do appropriate interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259141PMC
http://dx.doi.org/10.1177/20552076231170493DOI Listing

Publication Analysis

Top Keywords

chronic comorbidities
28
patients
15
mortality risk
12
covid-19 patients
12
los patients
12
risk mortality
12
patients chronic
8
comorbidities based
8
machine learning
8
learning algorithms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: