One of the most common methods used for the reconstruction of endodontically treated teeth is post and core and crown. Various factors such as the remaining tissue above the cutting margin (ferrule) affect the fracture resistance of teeth restored with post and core and crown. This study aimed to investigate the effect of ferrule/crown ratio (FCR) on the strength of maxillary anterior central teeth using finite element analysis. A 3D scan of a central incisor was obtained, and the data were transferred to Mimics software. Then, a 3D model of the tooth was designed. Next, 300N load was applied at a 135° angle to the tooth model. Force was applied to the model both horizontally and vertically. Ferrule height was considered to be 5%, 10%, 15%, 20%, and 25% in the palatal surface and 50% in the buccal surface. The length of post in the model was 11, 13, and 15mm. By increasing the FCR, stress and strain distribution increased in the dental model and decreased in the post itself. As the horizontal angle of load application increased, the level of stress and strain created in the dental model increased as well. The closer the force application site to the incisal area, the higher the stress and strain would be. Maximum stress was inversely correlated with FCR and post length. In ratios of 20% and higher, insignificant changes occurred in stress and strain patterns in the dental model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258393PMC
http://dx.doi.org/10.18502/fid.v20i16.12686DOI Listing

Publication Analysis

Top Keywords

stress strain
20
dental model
12
ferrule/crown ratio
8
post length
8
strain distribution
8
endodontically treated
8
central teeth
8
teeth finite
8
finite element
8
element analysis
8

Similar Publications

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Comparative finite element analysis: internal fixation plate versus intramedullary nail for neer type III-VI proximal humeral fractur.

J Orthop Surg Res

January 2025

Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.

Background: Finite element analysis (FEA) could advance the understanding of fracture fixation and guide the choice of surgical treatment. This study aimed to compare two internal fixation methods in the treatment of displaced proximal humeral fracture (PHF) through FEA.

Methods: Three-dimensional FEA model based on the left shoulder joint of a 67-year-old female patient with PHFs and osteoporosis was adopted, in order to analyze the fixation effect and load stress distribution of internal fixation plates with open reduction and intramedullary nails without opening the fracture in the treatment of Neer III-VI PHF.

View Article and Find Full Text PDF

Endophytes are microorganisms residing in plant tissues without causing harm and their relevance in medicinal plants has grown due to their biomolecules used in pharmaceuticals. This study isolated two endophytic bacterial strains from the leaves of M. oleifera and P.

View Article and Find Full Text PDF

This study investigates the effects of lead stress on tomato plants and explores the potential role of plant growth-promoting rhizobacteria (PGPR) to alleviate this stress. The experiment was conducted in pots, introducing varying lead levels (0, 100, 200, 300, 400, and 500 mg kg⁻¹) using lead nitrate. For rhizobacterial inoculation, pre-characterized LTPGP strains S5 Pseudomonas fluorescens A506 and S10 Pseudomonas fluorescens LMG 2189 were used.

View Article and Find Full Text PDF

To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!