Unlabelled: Uncovering the genetic basis of agronomic traits in sorghum landraces that have adapted to various agro-climatic conditions would contribute to sorghum improvement efforts around the world. To identify quantitative trait nucleotides (QTNs) associated with nine agronomic traits in a panel of 304 sorghum accessions collected from diverse environments across Ethiopia (considered to be the center of origin and diversity), multi-locus genome-wide association studies (ML-GWAS) were performed using 79,754 high quality single nucleotide polymorphism (SNP) markers. Association analyses using six ML-GWAS models identified a set of 338 significantly ( ≥ 3)-associated QTNs for nine agronomic traits of sorghum accessions evaluated in two environments (E1 and E2) and their combined dataset (Em). Of these, 121 reliable QTNs, including 13 for flowering time (), 13 for plant height (), 9 for tiller number (), 15 for panicle weight (), 30 for grain yield per panicle (), 12 for structural panicle mass (), 13 for hundred seed weight (), 6 for grain number per panicle (), and 10 for panicle exertion () were consistently detected by at least three ML-GWAS methods and/or in two different environments. Notably, gene AP2/ERF, known for regulation of plant growth, and the sorghum gene, which functions in the control of floral architecture, were identified as strong candidate genes associated with and , respectively. This study provides an entry point for further validation studies to elucidate complex mechanisms controlling important agronomic traits in sorghum.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01381-5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248676 | PMC |
http://dx.doi.org/10.1007/s11032-023-01381-5 | DOI Listing |
BMC Genomics
January 2025
Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.
View Article and Find Full Text PDFPlant Physiol
January 2025
Rothamsted Research, West Common, Harpenden, Al5 2JQ, UK.
The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Dept. of Plant Science and Crop Protection, University of Nairobi, P.O Box 29053-00625, Nairobi, Kenya.
Micronutrient malnutrition is one of the most serious health challenges facing vast sectors of Africa's population particularly resource-poor women and children. Main deficiencies include iron, zinc and vitamin A. Plant breeding has frequently been advocated as the most sustainable strategy of providing varieties of different food crop species with enhanced micronutrient density to combat the global hidden hunger problem which affects more than 2 billion people.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China.
Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.
View Article and Find Full Text PDFSci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!