Phytic acid is a stored form of phosphorus in cereals, 65 to 70% of phosphorus in plant sources is phytate, and broilers are only able to use part of the phosphorus in plant sources. To meet the needs of chickens, it is necessary to use other artificial resources, which not only impose part of the cost of the breeding period because of its presence in the manure but is one of the factors polluting the environment. This study aimed to use different levels of phytase enzyme to reduce dietary phosphorus levels. 600 Ross 308 broilers were used in this experiment with five treatments and six replications, and in each replication, 20 chickens were used in a completely randomized design (CRD). Experimental treatments include 1) basal diet (control) 2) basal diet with 15% less phosphorus 3) basal diet with 15% less phosphorus + 1250 (FTU) phytase enzyme 4) basal diet with 15% less phosphorus + 2500 (FTU) phytase enzyme 5) basal diet with 15% less phosphorus + 5000 (FTU) phytase enzyme. The evaluated traits included weekly feed intake, weekly weight gain, feed conversion ratio, carcass characteristics, ash, calcium, and bone phosphorus. The use of phytase enzyme in different diets had no significant effect on food intake, weight gain, and feed conversion ratio (>0.05). However, the use of phytase in different diets significantly affected the percentage of Gizzard, Heart, Liver, Proventriculus, and Spleen (<0.05). The most changes were the increase in the ratio of feed intake and weight gain in the fourth week compared to the third week so that the changes in the ratio of feed intake ranged from 1.85 to 1.91, and this ratio for weight gain also ranged from 3.12 to 3.86 was recorded, and the lowest feed conversion ratio was obtained at the same age. The percentage of raw ash in broiler chickens was significantly increased by adding dietary phytase. The lowest amount of ash, calcium, and phosphorus belonged to the second group (diets with low phosphorus and no enzyme). The difference between the other groups and the control was not significant. Feed intake, weight gain, and feed conversion ratio with the addition of phytase enzyme were not affected by phosphorus reduction and had no significant effect on carcass characteristics. Environmental pollution can be prevented by reducing the level of dietary phosphorus and reducing excreted phosphorus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258293PMC
http://dx.doi.org/10.22092/ARI.2022.359524.2443DOI Listing

Publication Analysis

Top Keywords

phytase enzyme
20
basal diet
20
diet 15%
16
15% phosphorus
16
ftu phytase
12
phosphorus
9
phosphorus plant
8
plant sources
8
enzyme basal
8
weight gain
8

Similar Publications

Interactions of the emerging fungus with reveal phenotypic changes with direct implications on the response to stress and virulence.

Microbiol Spectr

December 2024

Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Unlabelled: is an emerging fungal pathogen notable for its resistance to multiple antifungals and ability to survive in various environments. Understanding the interactions between and environmental protozoa, such as could provide insights into fungal adaptability and pathogenicity. Two isolates (MMC1 and MMC2) were co-cultured with to examine interaction dynamics, survival, stress responses, growth, virulence, biofilm formation, and antifungal susceptibility.

View Article and Find Full Text PDF

Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability-A Narrative Review of Human Interventions.

Nutrients

November 2024

Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.

Background: Phytic acid is abundant in plant-based diets and acts as a micronutrient inhibitor for humans and non-ruminant animals. Phytases are enzymes that break down phytic acid, releasing micronutrients and enhancing their bioavailability, particularly iron and zinc. Deficiencies in iron and zinc are significant public health problems, especially among populations with disease-associated malnutrition or those in developing countries consuming phytic acid-rich diets.

View Article and Find Full Text PDF

Introduction: The Longan fruit tree of the Vietnam Mekong Delta is grown in raised beds to improve water drainage during the rainy season and can live as long as 100 years.

Objective: This research explores the extent to which the soil microorganisms as well as soil physical and chemical properties of these raised beds degrade over a period of 60 years under traditional management practices.

Materials And Methods: Raised bed topsoil samples at depths of 0-20 cm were obtained from four different Longan orchards raised bed age groups: group 1) 15-25 years (L1-L5); group 2) 26-37 years (L6-L10); group 3) 38-45 years (L11-L15); and group 4) 46-60 years.

View Article and Find Full Text PDF

The use of reduced protein diets in broiler chicken production provides potential benefits for performance and environmental footprint of production. The effectiveness of β-Mannanase supplementation in wheat and soy based standard protein (SP) and reduced protein (RP) diets was tested for growth performance, nutrient utilisation and selected intestinal gene expression of broiler chickens. In a 2 × 2 factorial arrangement of treatments, two main factors included dietary protein (standard and reduced protein) and β-Mannanase supplementation (with or without).

View Article and Find Full Text PDF

Achieving thermostability of a phytase with resistance up to 100 °C.

J Biol Chem

November 2024

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China. Electronic address:

The development of enzymes with high-temperature resistance up to 100 °C is of significant and practical value in advancing the sustainability of industrial production. Phytase, a crucial enzyme in feed industrial applications, encounters challenges due to its limited heat resistance. Herein, we employed rational design strategies involving the introduction of disulfide bonds, free energy calculation, and B-factor analysis based on the crystal structure of phytase APPAmut4 (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!