Effect of Citrus bergamia extract on lipid profile: A combined in vitro and human study.

Phytother Res

Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.

Published: September 2023

With the aim of characterising the hypo-lipidemic function of the Brumex™ ingredient obtained from the whole fruit of Citrus bergamia, a combined pre-clinical and clinical study was conducted. In the HepG2 experimental model, we first demonstrated that Brumex™ does not trigger any significant alteration in cell viability over the tested concentration range of 1-2000 μg/mL (4 and 24 h). By stimulating the phosphorylation of AMP-activated protein kinase (AMPK) at threonine 172, Brumex™ significantly reduces both cholesterol and triglyceride (TG) intracellular content of HepG2 cells and impairs the expression levels of lipid synthesis-related genes (namely, SREBF1c, SREBF2, ACACA, SCD1, HMGCR and FASN). In vitro data have been validated in a dedicated double-blind, placebo-controlled, randomised clinical trial performed in 50 healthy moderately hyper-cholesterolemic subjects, undergoing supplementation with either Brumex™ (400 mg) or placebo for 12 weeks. Clinical and blood laboratory data were evaluated at the baseline and at the end of the trial. Brumex™ positively impacted on both plasma lipid pattern and liver enzymes compared with the placebo, mainly in terms of significant reduction of total cholesterol (TC), TG, low-density lipoprotein-cholesterol (LDL-C), non-high-density lipoprotein-cholesterol (non-HDL-C), apolipoprotein B100 (ApoB), fasting plasma glucose (FPG), glutamic-oxaloacetic transaminase (GOT), glutamate pyruvate transaminase (GPT) and gamma-glutamyl-transferase (gGT).

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.7897DOI Listing

Publication Analysis

Top Keywords

citrus bergamia
8
brumex™
5
bergamia extract
4
extract lipid
4
lipid profile
4
profile combined
4
combined vitro
4
vitro human
4
human study
4
study aim
4

Similar Publications

Citrus canker poses a serious threat to a highly significant citrus fruit crop, this disease caused by one of the most destructive bacterial plant pathogens Xanthomonas citri pv. citri (Xcc). Bacterial plant diseases significantly reduce crop yields worldwide, making it more difficult to supply the growing food demand.

View Article and Find Full Text PDF

Chemically-synthesized Nanozymes that are widely used as alternatives to enzymes face challenges such as high precursor costs, complex preparation processes, and limited catalytic efficiency. To overcome these drawbacks, we introduce naturally derived nanozymes, nanomineralzymes, as a promising alternative, offering benefits like affordability, cost-effectiveness, and scalability. Chalcopyrite (CP, CuFeS) was sourced from a mineral deposit, and CP nanoparticles were produced by milling.

View Article and Find Full Text PDF

Effects of Maillard Reaction Durations on the Physicochemical and Emulsifying Properties of Chickpea Protein Isolate.

Foods

January 2025

Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.

View Article and Find Full Text PDF

One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of LNFCA11 and B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee.

View Article and Find Full Text PDF

Correction: Tian et al. Genome-Wide Identification of the DnaJ Gene Family in Citrus and Functional Characterization of in Response to Citrus Huanglongbing. 2024, , 11967.

Int J Mol Sci

January 2025

MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China.

In the original publication [...

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!