Air-stable mixed cation lead halide perovskite films and microscopic study of their degradation process.

Nanoscale

Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.

Published: June 2023

We report the preparation and nanoscale photophysical characterization of mixed cation perovskite films of the composition MAFAPbI, with = 0, 0.3 and 0.5. Films with = 0.5 and 0.3 prepared in air using ethyl acetate as an antisolvent in a one-step spin-coating process are compositionally stable in ambient air for more than a year, in contrast to films prepared using a chlorobenzene antisolvent. The onset of degradation of the films near the film edges was monitored using photoluminescence (PL) spectroscopy. The PL spectra of the degradation products are consistent with the PL spectra of 2D perovskite sheets of varying thicknesses. Morphologically, aging of the films brings about coalescing of the film grain structure into larger crystal grains. Furthermore, monitoring of the time traces of PL from individual nanoscale locations in the films (PL blinking) reveals that aging of the films does not change the extent of dynamic PL quenching or affect the observed long-range charge diffusion on the order of micrometers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr02003gDOI Listing

Publication Analysis

Top Keywords

mixed cation
8
films
8
perovskite films
8
films prepared
8
aging films
8
air-stable mixed
4
cation lead
4
lead halide
4
halide perovskite
4
films microscopic
4

Similar Publications

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

From solubility to efficiency: Per- and polyfluoroalkyl substances (PFAS) regeneration from anion exchange resins.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:

This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).

View Article and Find Full Text PDF

Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes.

Polymers (Basel)

January 2025

Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.

View Article and Find Full Text PDF

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization.

Membranes (Basel)

January 2025

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!