Senescent cells (SnCs) are implicated in aging and various age-related pathologies. Targeting SnCs can treat age-related diseases and extend health span. However, precisely tracking and visualizing of SnCs is still challenging, especially in in vivo environments. Here, we developed a near-infrared (NIR) fluorescent probe (XZ1208) that targets β-galactosidase (β-Gal), a well-accepted biomarker for cellular senescence. XZ1208 can be cleaved rapidly by β-Gal and produces a strong fluorescence signal in SnCs. We demonstrated the high specificity and sensitivity of XZ1208 in labeling SnCs in naturally aged, total body irradiated (TBI), and progeroid mouse models. XZ1208 achieved a long-term duration of over 6 days in labeling senescence without causing significant toxicities and accurately detected the senolytic effects of ABT263 on eliminating SnCs. Furthermore, XZ1208 was applied to monitor SnCs accumulated in fibrotic diseases and skin wound healing models. Overall, we developed a tissue-infiltrating NIR probe and demonstrated its excellent performance in labeling SnCs in aging and senescence-associated disease models, indicating great potential for application in aging studies and diagnosis of senescence-associated diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410003 | PMC |
http://dx.doi.org/10.1111/acel.13896 | DOI Listing |
Int J Biol Macromol
December 2024
INFN-Laboratori Nazionali di Frascati, 00044 Frascati, Italy.
This study investigates the synthesis of corn starch nanocrystals (SNCs) via sulfuric acid hydrolysis. Esterification of oleic acid (OA) with SNCs was carried out using Maghnite-H as a catalyst, a non-polluting, eco-friendly proton-exchanged montmorillonite-based green catalyst suitable for various chemical processes. Optimization of synthesis parameters, including reaction temperature, duration, and catalyst quantity, was conducted using response surface methodology (RSM) with a central composite design incorporating three factors and three levels.
View Article and Find Full Text PDFGeroscience
December 2024
Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
Although cellular senescence has been recognized as a hallmark of aging, it is challenging to detect senescence cells (SnCs) due to their high level of heterogeneity at the molecular level. Machine learning (ML) is likely an ideal approach to address this challenge because of its ability to recognize complex patterns that cannot be characterized by one or a few features, from high-dimensional data. To test this, we evaluated the performance of four ML algorithms including support vector machines (SVM), random forest (RF), decision tree (DT), and Soft Independent Modelling of Class Analogy (SIMCA), in distinguishing SnCs from controls based on bulk RNA sequencing data.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry and Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States.
A single photoexcited electron-hole pair within a polar semiconductor nanocrystal (SNC) alters the charge screening and shielding within it. Perturbations of the crystal lattice and of the valence and conduction bands result, and the quantum-confinement states in a SNC shift uniquely with a dependence on the states occupied by the carriers. This shifting is termed quantum-state renormalization (QSR).
View Article and Find Full Text PDFPediatr Blood Cancer
December 2024
Department of Pediatrics, Pediatric Hematology-Oncology & BMT Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Objective: To assess the frequency of neuropathic pain (NP) and its impact in young patients with sickle cell disease (SCD).
Methods: We used the ID-Pain (ID-P) questionnaire and a bedside clinical sensory testing (CST) as screening tools for NP and performed sensory nerve conduction study (SNCS) for all the participants. The impact of pain was assessed using Patient-Reported Outcomes Measurement Information System (PROMIS) questionnaires and Pediatric Quality of Life Inventory (PedsQL) SCD module.
Nanoscale Adv
November 2024
Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
Nanoparticles (NPs) have been widely studied and applied in medical and pharmaceutical fields. When NPs enter the environment, they are covered with protein molecules to form the so-called "protein corona". Because NPs and proteins are comparable in size, the shape of NPs has a significant impact on NP-protein interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!