Objective: Bananas are one of the most popular fruits in the world, providing food security and employment opportunities in several developing countries. Increasing the anthocyanin content of banana fruit could improve the health-promoting properties. Anthocyanin biosynthesis is largely regulated at the transcriptional level. However, relatively little is known about the transcriptional activation of anthocyanin biosynthesis in banana.

Results: We analysed the regulatory activity of three Musa acuminata MYBs that were predicted by bioinformatic analysis to transcriptionally regulate anthocyanin biosynthesis in banana. MaMYBA1, MaMYBA2 and MaMYBPA2 did not complement the anthocyanin-deficient phenotype of the Arabidopsis thaliana pap1/pap2 mutant. However, co-transfection experiments in A. thaliana protoplasts showed that MaMYBA1, MaMYBA2 and MaMYBPA2 function as components of a transcription factor complex with a bHLH and WD40 protein, the so called MBW complex, resulting in the activation of the A. thaliana ANTHOCYANIDIN SYNTHASE and DIHYDROFLAVONOL 4-REDUCTASE promoters. The activation potential of MaMYBA1, MaMYBA2 and MaMYBPA2 was increased when combined with the monocot Zea mays bHLH ZmR instead of the dicot AtEGL3. This work paves the path towards decoding the MBW complex-mediated transcriptional activation of anthocyanin biosynthesis in banana. It will also facilitate research towards increased anthocyanin content in banana and other monocot crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262479PMC
http://dx.doi.org/10.1186/s13104-023-06375-2DOI Listing

Publication Analysis

Top Keywords

anthocyanin biosynthesis
20
mamyba1 mamyba2
12
mamyba2 mamybpa2
12
musa acuminata
8
mbw complex
8
anthocyanin content
8
content banana
8
transcriptional activation
8
activation anthocyanin
8
biosynthesis banana
8

Similar Publications

Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.

View Article and Find Full Text PDF

The characterization of in regulation of flower size through tuning cell expansion genes.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.

Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.

View Article and Find Full Text PDF

CmBBX28-CmMYB9a Module Regulates Petal Anthocyanin Accumulation in Response to Light in Chrysanthemum.

Plant Cell Environ

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization. Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, P. R. China.

Light is one of the most important environmental factors that affect plant growth and development. It also stimulates anthocyanin biosynthesis in plants. However, the precise molecular mechanisms through which light regulates anthocyanin biosynthesis, particularly in non-model plant species, remain poorly understood.

View Article and Find Full Text PDF

Comprehensive analysis of metabolomics and transcriptomics reveals varied tepal pigmentation across Gloriosa varieties.

BMC Plant Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.

Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase.

View Article and Find Full Text PDF

Emerging Trends in Secondary Metabolite Research in Caryophyllales: Betalains and Their Roles in Plant Adaptation and Defense Mechanisms.

J Agric Food Chem

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Betalains, a distinctive group of nitrogen-containing pigments exclusive to the Caryophyllales order, possess diverse biological activities such as antioxidant, anti-inflammatory, and antimicrobial properties, making them highly valuable for applications in food, nutraceutical, and pharmaceutical industries. This Review provides a comprehensive analysis of betalain biosynthesis, structural diversity, and ecological significance, highlighting their roles in enhancing stress resilience, adaptation mechanisms, and plant evolutionary strategies. The evolutionary development of betalains is explored, revealing their emergence through gene duplication events and providing insights into their mutual exclusivity with anthocyanins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!