This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447291 | PMC |
http://dx.doi.org/10.1007/s00299-023-03037-2 | DOI Listing |
Plant Cell Environ
January 2025
Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.
View Article and Find Full Text PDFFood Technol Biotechnol
December 2024
Hanbit Flavor and Fragrance Co. Ltd., 88 Sinwon-ro, Youngtong-gu, 101-1511 Gyeonggi-do, South Korea.
Research Background: Green extraction technologies, such as microwave-assisted extraction, have been used to replace conventional methods of isolating essential oils from plants. In this study, the essential oil was extracted from the variety koseret using the advanced method of microwave-assisted hydrodistillation. The main objective was to investigate the effect of irradiation time, microwave power and particle size on the yield and chemical composition of the essential oil extracted from leaves dried in an oven at 50 °C and room temperature.
View Article and Find Full Text PDFACS Omega
January 2025
Postgraduate Program in Chemistry, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil.
Cellulose, the most abundant biopolymer on Earth, is biodegradable, nontoxic, and derived from renewable sources. Its properties and applications depend on the extraction methods and sources, making plant waste reuse a sustainable production option. This study aimed to assess the potential of cowpea pod skin () as a source of microcellulose (CPMC) using a chemical-mechanical process involving ball milling combined with acid hydrolysis.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Lab for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China.
Pokkah boeng disease (PBD), a common and highly destructive disease of sugarcane, is mainly caused by Fusarium sacchari. Breeding sugarcane resistant to PBD is challenging due to the limited availability of immune or highly resistant germplasm resources. Host-induced gene silencing (HIGS) based on RNA interference (RNAi) is a promising disease-control method that offers strong disease-targeting ability with low environmental impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!