Promoting genotype-independent plant transformation by manipulating developmental regulatory genes and/or using nanoparticles.

Plant Cell Rep

Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Published: September 2023

This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447291PMC
http://dx.doi.org/10.1007/s00299-023-03037-2DOI Listing

Publication Analysis

Top Keywords

plant transformation
32
developmental regulatory
28
regulatory genes
28
plant
15
applications developmental
12
genes nanoparticles
12
transformation plant
12
transformation
10
genotype-independent plant
8
manipulating developmental
8

Similar Publications

Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance.

Plant Cell Environ

January 2025

Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.

View Article and Find Full Text PDF

Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.

View Article and Find Full Text PDF

Effect of Drying and Microwave-Assisted Extraction Parameters on Variety Koseret Essential Oil Yield.

Food Technol Biotechnol

December 2024

Hanbit Flavor and Fragrance Co. Ltd., 88 Sinwon-ro, Youngtong-gu, 101-1511 Gyeonggi-do, South Korea.

Research Background: Green extraction technologies, such as microwave-assisted extraction, have been used to replace conventional methods of isolating essential oils from plants. In this study, the essential oil was extracted from the variety koseret using the advanced method of microwave-assisted hydrodistillation. The main objective was to investigate the effect of irradiation time, microwave power and particle size on the yield and chemical composition of the essential oil extracted from leaves dried in an oven at 50 °C and room temperature.

View Article and Find Full Text PDF

Cellulose, the most abundant biopolymer on Earth, is biodegradable, nontoxic, and derived from renewable sources. Its properties and applications depend on the extraction methods and sources, making plant waste reuse a sustainable production option. This study aimed to assess the potential of cowpea pod skin () as a source of microcellulose (CPMC) using a chemical-mechanical process involving ball milling combined with acid hydrolysis.

View Article and Find Full Text PDF

Enhanced Resistance to Pokkah Boeng Disease in Sugarcane Through Host-Induced Gene Silencing Targeting FsCYP51 in Fusarium sacchari.

Plant Cell Environ

January 2025

State Key Lab for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China.

Pokkah boeng disease (PBD), a common and highly destructive disease of sugarcane, is mainly caused by Fusarium sacchari. Breeding sugarcane resistant to PBD is challenging due to the limited availability of immune or highly resistant germplasm resources. Host-induced gene silencing (HIGS) based on RNA interference (RNAi) is a promising disease-control method that offers strong disease-targeting ability with low environmental impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!