A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Population size in QTL detection using quantile regression in genome-wide association studies. | LitMetric

The aim of this study was to evaluate the performance of Quantile Regression (QR) in Genome-Wide Association Studies (GWAS) regarding the ability to detect QTLs (Quantitative Trait Locus) associated with phenotypic traits of interest, considering different population sizes. For this, simulated data was used, with traits of different levels of heritability (0.30 and 0.50), and controlled by 3 and 100 QTLs. Populations of 1,000 to 200 individuals were defined, with a random reduction of 100 individuals for each population. The power of detection of QTLs and the false positive rate were obtained by means of QR considering three different quantiles (0.10, 0.50 and 0.90) and also by means of the General Linear Model (GLM). In general, it was observed that the QR models showed greater power of detection of QTLs in all scenarios evaluated and a relatively low false positive rate in scenarios with a greater number of individuals. The models with the highest detection power of true QTLs at the extreme quantils (0.10 and 0.90) were the ones with the highest detection power of true QTLs. In contrast, the analysis based on the GLM detected few (scenarios with larger population size) or no QTLs in the evaluated scenarios. In the scenarios with low heritability, QR obtained a high detection power. Thus, it was verified that the use of QR in GWAS is effective, allowing the detection of QTLs associated with traits of interest even in scenarios with few genotyped and phenotyped individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264463PMC
http://dx.doi.org/10.1038/s41598-023-36730-zDOI Listing

Publication Analysis

Top Keywords

detection qtls
12
detection power
12
population size
8
quantile regression
8
regression genome-wide
8
genome-wide association
8
association studies
8
qtls
8
traits interest
8
power detection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!