Plant secondary metabolites are well known for their biological functions in defending against pathogenic microorganisms. Tea saponin (TS), one type of secondary metabolite of the tea plant (), has been shown to be a valuable botanical pesticide. However, its antifungal activity in controlling the fungi , , and , which induce major diseases in apple (), has not been determined. In this study, we first determined that TS has higher inhibitory activity than catechins against the three types of fungi. We further utilized in vitro and in vivo assays to confirm that TS showed high antifungal activity against the three types of fungi, especially for and . In the in vivo assay, application of a 0.5% TS solution was able to restrain the fungus-induced necrotic area in detached apple leaves efficiently. Moreover, a greenhouse infection assay also confirmed that TS treatment significantly inhibited infection in leaves of apple seedlings. In addition, TS treatment activated plant immune responses by decreasing accumulation of reactive oxygen species and promoting the activity of pathogenesis-related proteins, including chitinase and β-1,3-glucanase. This indicated that TS might serve as a plant defense inducer to activate innate immunity to fight against fungal pathogen invasion. Therefore, our data indicated that TS might restrain fungal infection in two ways, by directly inhibiting the growth of fungi and by activating plant innate defense responses as a plant defense inducer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-01-23-0014-R | DOI Listing |
Biomed Res Int
December 2024
Department of Biochemistry & Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
The activity of rare saponins is generally better than that of their prototypes. There are significant differences in the proportions and pharmacological effects of rare saponins/prototype saponins in Gynostemma pentaphyllum samples dried with different methods, which may be related to the reaction catalyzed by glucosidase. To explore the pattern of the enzymatic reaction catalyzed by glucosidase during the processing of G.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu (611430), Sichuan, China. Electronic address:
In this study, novel bigel beads based on alginate hydrogel and monoglycerol oleogel were developed using tea saponin (TS) for interfacial modification. We investigated the impact of the structures of oleogel-hydrogel interface on the stability and bioactives release of bigel beads, with curcumin as the model hydrophobic bioactive. With higher TS content, the particle size and ζ-potential of the bigel emulsions was first decreased and then increased.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Environmental Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67000, Turkey.
The choice of plant species is crucial, as different plants provide unique biomolecules that influence nanoparticle characteristics. Biomolecules in plant extracts, such as proteins, amino acids, enzymes, polysaccharides, alkaloids, tannins, phenolics, saponins, terpenoids, and vitamins, act as stabilizing and reducing agents. This study explores the synthesis of silver nanoparticles (AgNPs) using leaf extracts from collard greens ( var.
View Article and Find Full Text PDFFood Chem
December 2024
Beijing Institute of Radiation Medicine, Beijing 100850, China. Electronic address:
Jiaogulan herbal tea, known for its pharmacological benefits, is derived from various species within the genus Gynostemma, particular for G. pentaphyllum (GP) and G. longipes (GL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!