This article contains a comprehensive tutorial on classification by means of Soft Independent Modelling of Class Analogy (SIMCA). Such a tutorial was conceived in an attempt to offer pragmatic guidelines for a sensible and correct utilisation of this tool as well as answers to three basic questions: "why employing SIMCA?", "when employing SIMCA?" and "how employing/not employing SIMCA?". With this purpose in mind, the following points are here addressed: i) the mathematical and statistical fundamentals of the SIMCA approach are presented; ii) distinct variants of the original SIMCA algorithm are thoroughly described and compared in two different case-studies; iii) a flowchart outlining how to fine-tune the parameters of a SIMCA model for achieving an optimal performance is provided; iv) figures of merit and graphical tools for SIMCA model assessment are illustrated and v) computational details and rational suggestions about SIMCA model validation are given. Moreover, a novel Matlab toolbox, which encompasses routines and functions for running and contrasting all the aforementioned SIMCA versions is also made available.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341304DOI Listing

Publication Analysis

Top Keywords

employing simca?"
12
simca model
12
soft independent
8
independent modelling
8
modelling class
8
class analogy
8
simca
7
class modelling
4
modelling soft
4
analogy how?
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!