Estimates of organismal thermal tolerance are frequently used to assess physiological risk from warming, yet the assumption that these estimates are predictive of mortality has been called into question. We tested this assumption in the cold-water-specialist frog, . For seven populations, we used dynamic experimental assays to measure tadpole critical thermal maximum (CTmax) and measured mortality from chronic thermal stress for 3 days at different temperatures. We tested the relationship between previously estimated population CTmax and observed mortality, as well as the strength of CTmax as a predictor of mortality compared to local stream temperatures capturing varying timescales. Populations with higher CTmax experienced significantly less mortality in the warmest temperature treatment (25°C). We also found that population CTmax outperformed stream temperature metrics as the top predictor of observed mortality. These results demonstrate a clear link between CTmax and mortality from thermal stress, contributing evidence that CTmax is a relevant metric for physiological vulnerability assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264101PMC
http://dx.doi.org/10.1098/rsbl.2023.0106DOI Listing

Publication Analysis

Top Keywords

thermal stress
12
critical thermal
8
thermal maximum
8
mortality
8
mortality thermal
8
population ctmax
8
observed mortality
8
ctmax
7
thermal
6
linking critical
4

Similar Publications

Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies.

Pharm Res

January 2025

BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.

Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.

Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.

View Article and Find Full Text PDF

Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

Unlabelled: Remains of megatheres have been known since the 18th -century and were among the first megafaunal vertebrates to be studied. While several examples of preserved integument show a thick coverage of fur for smaller ground sloths living in cold climates such as and , comparatively very little is known about megathere skin. Assuming a typical placental mammal metabolism, it was previously hypothesized that megatheres would have had little-to-no fur as they achieved giant body sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!