Planar cell polarity: intracellular asymmetry and supracellular gradients of Frizzled.

Open Biol

Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

Published: June 2023

Planar cell polarity (PCP), the coordinated orientation of structures such as cilia, mammalian hairs or insect bristles, depends on at least two molecular systems. We have argued that these two systems use similar mechanisms; each depending on a supracellular gradient of concentration that spans a field of cells. In a linked paper, we studied the Dachsous/Fat system. We found a graded distribution of Dachsous in a segment of the pupal epidermis in the abdomen of . Here we report a similar study of the key molecule for the Starry Night/Frizzled or 'core' system. We measure the distribution of the receptor Frizzled on the cell membranes of all cells of one segment in the living pupal abdomen of . We find a supracellular gradient that falls about 17% in concentration from the front to the rear of the segment. We present some evidence that the gradient then resets in the most anterior cells of the next segment back. We find an intracellular asymmetry in all the cells, the posterior membrane of each cell carrying about 22% more Frizzled than the anterior membrane. These direct molecular measurements add to earlier evidence that the two systems of PCP act independently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264100PMC
http://dx.doi.org/10.1098/rsob.230105DOI Listing

Publication Analysis

Top Keywords

planar cell
8
cell polarity
8
intracellular asymmetry
8
supracellular gradient
8
cells segment
8
polarity intracellular
4
asymmetry supracellular
4
supracellular gradients
4
gradients frizzled
4
frizzled planar
4

Similar Publications

Cochlear Organ Dissection, Immunostaining, and Confocal Imaging in Mice.

Bio Protoc

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

There has been limited exploration of carbon nanofiber as a scaffold for cellular attachment and proliferation. In this work, commercially available, pyrolytically stripped carbon nanofiber (cCNF) is deposited over electrospun nanofiber mats, polycaprolactone (PCL) and poly(D-lactide) (PDLA), to immobilize them and investigate whether the 3D cCNF layer's surface augments cell proliferation of human dermal fibroblasts (nHDF). Spectral characterizations, such as XRD and Raman, show that cCNF exhibited crystalline structure with a high graphitization degree.

View Article and Find Full Text PDF

An efficient heuristic for geometric analysis of cell deformations.

Comput Biol Med

January 2025

SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:

Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!